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Abstract

Labeled event sequences occurring at irregular intervals in continuous time are
common across a wide range of application domains. Typical examples include
user interactions on social media platforms, online shopping activity, electronic
health records, and earthquake occurrences in seismology. Marked Temporal
Point Processes (MTPP) provide a principled framework for modeling these
event sequences, enabling subsequent inferences such as predicting the arrival
times of future events, as well as their associated labels, called marks. In
this context, the main challenge consists in learning a MTPP model that ac-
curately captures the cross-temporal dependencies between past observations
and future ones. However, classical MTPP models are often constrained by
strong assumptions, which practically limit their ability to capture the com-
plex dynamics of real-world patterns. To overcome this limitation, neural
MTPP models have emerged as a flexible alternative, leveraging neural network
parametrizations to improve modeling capabilities. Since its introduction, the
field of neural MTPP modeling witnessed rapid development, with the emer-
gence of numerous neural architectures applied successfully to a diverse set of
real-world problems.

While recent studies demonstrate the effectiveness of neural MTPP models,
the field still faces a series of open challenges that warrant future exploration
from the community. Specifically, evaluation setups for newly proposed models
often lack consistency between studies, relying on different baselines, datasets,
and experimental configurations. This context makes it challenging to identify
key factors driving improvements in predictive accuracy, effectively hindering
future research progress in the field. Another challenge relates to the common
strategies adopted to learn these probabilistic models from event sequence data.
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In practice, neural MTPP models are often trained by Maximum Likelihood
Estimation (MLE), which reduces to minimizing the Negative Log-Likelihood
(NLL) over observed sequences. This training procedure implicitly involves
learning two predictive distributions: one for the arrival times of events, and
another for their marks. Usually, neural MTPP parametrizations enforce these
two distributions to be learned jointly, which can lead to challenges during
optimization and degrade model performance. Finally, a third challenge relates
to accurately quantifying the uncertainty in the predictions extracted from
neural MTPP models. Indeed, due to model misspecification or lack of training
data, these probabilistic models may provide a poor approximation of the
true, unknown underlying process. Consequently, prediction regions extracted
directly from the model may be unreliable, failing to faithfully reflect the true
uncertainty.

In this thesis, we seek to address these concerns by introducing novel neu-
ral MTPP models for probabilistic modeling of continuous-time event data,
designing new training strategies to enhance their predictive accuracy, and de-
veloping reliable, distribution-free methods to quantify the uncertainty in their
predictions. To that end, we begin our discussion with a comprehensive large-
scale experimental study that systematically evaluates the predictive accuracy
of modern neural MTPP models. We thoroughly investigate the influence
of major architectural components in modeling the time and mark predictive
distributions, and shed light on specific design choices that lead to increased
predictive accuracy. Furthermore, we delve into the less explored area of prob-
abilistic calibration for neural MTPP models, and highlight that the mark
predictive distribution is often miscalibrated. Our study aims to provide valu-
able insights into the performance and characteristics of neural MTPP models,
contributing to a better understanding of their strengths and limitations.

We then show that learning a neural MTPP model with the NLL objective
can be interpreted as a two-task learning problem, where both tasks share a
common set of trainable parameters that are optimized jointly. We show that
this common practice can lead to the emergence of conflicting gradients dur-
ing training, where task-specific gradients are pointing in opposite directions.
When such conflicts arise, following the average gradient can be detrimental to
the learning of each individual task, resulting in overall degraded performance.
To overcome this issue, we introduce novel parametrizations for neural MTPP
models that allow for separate modeling and training of each task, effectively
preventing the emergence of conflicts. Specifically, our framework allows to
prevent conflicting gradients from the root while maintaining the flexibility of
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the original parametrizations. Our experiments on real-world event sequence
datasets outline the advantages of our framework over the original model for-
mulations.

Finally, we develop more reliable methods for uncertainty quantification in
neural MTPP models via the framework of conformal prediction. A primary
objective is to generate a distribution-free joint prediction region for an event’s
arrival time and mark, with finite-sample coverage guarantees. We first con-
sider a simple but overly conservative approach that combines individual pre-
diction regions for the event’s arrival time and mark. Then, we introduce a
more effective method based on bivariate highest density regions derived from
the joint predictive density of arrival times and marks. By leveraging the
dependencies between these two variables, this method excludes unlikely com-
binations of the two, resulting in sharper prediction regions while still attaining
the nominal coverage level. Through extensive experimentation on both sim-
ulated and real-world datasets, we confirm the validity and efficiency of these
methods.
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Introduction

1



2 Introduction

Many of our daily activities can naturally be represented as sequences of events
unfolding along a continuous timeline. As an illustrative example, consider the
task of monitoring the activity of various individuals purchasing items on an
online shopping platform. By recording the precise times at which each item is
purchased, we can generate a sequence of timestamps that reflects the unique
shopping behavior of each individual customer. Moreover, for each purchase,
we may have access to additional information regarding each purchase, such
as its price, or the category to which the item belongs. Such complementary
information, usually referred to as marks, can either be discrete (e.g. the item’s
category) or continuous (e.g. the item’s price), and provides a richer context
for understanding individual purchasing patterns.

Given the purchase history of these multiple individuals, we may want to pre-
dict the likely timings and marks of future purchases for both existing and new
costumers, allowing the platform to e.g. better manage stocks, or to provide
personalized recommendations. Importantly, we do not know in advance how
many items will be bought by a given individual, nor can we expect regu-
lar intervals between purchases, making this task challenging. Moreover, it is
reasonable to assume that purchases exhibit complex inter-dependencies, im-
plying that future transactions are directly influenced by an individual’s past
shopping behavior. For example, purchasing a bike may increase the likelihood
of buying protective gear shortly after, while simultaneously lowering the like-
lihood of acquiring a brand new car. Hence, modeling the complex dynamics
of events occurrences becomes crucial in predicting future purchases from past
observations. Figure 1.1 shows an illustration of event sequences for different
individuals in our online shopping example. Naturally, such sequences arise
in a variety of scenarios that extend well beyond our online shopping exam-
ple, such as the activity of an individual on social media, records of health
conditions, or even earthquake occurrences.

Marked Temporal Point Processes (MTPP) (Daley & Vere-Jones, 2008; Ras-
mussen, 2018) provide a principled mathematical framework for modeling these
sequences of marked events. In a MTPP, event occurrences are typically char-
acterized by conditional marked intensity functions, which specify the instan-
taneous rate of marked events arrivals on the continuous timeline given past
observations. Defining a MTPP model is thus usually achieved by specifying
a parametric form for each of these conditional marked intensity functions,
enabling future predictions on the evolution of the system.

Early developments in MTPP modeling can be traced back to the beginning
of the 20th century, where they originally found applications in modeling the
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Figure 1.1: Illustration of event sequences for different individuals in our online
shopping example.

random arrivals of telephone calls (Erlang, 1909) and the decay of radioac-
tive materials (Bateman, 1910). Nevertheless, it is only during the period
that followed the second world war that a substantial growth in the field of
MTPP theory was observed (Feller, 1949; Cox, 1955, 1966; Lewis, 1972; Lewis
& Shedler, 1979), with subsequent applications to various fields including in-
ventory control (Morse, 1958), reliability engineering (Cox, 1962; Barlow &
Proschan, 1965), neurobiology (Stein, 1965; Fatt & Katz, 1965), and seismol-
ogy (Ogata, 1988, 1998). Among these precursor models, the Hawkes process
(Hawkes, 1971) is a well-known example of MTPP model where past obser-
vations are assumed to "trigger" new events. Although first proposed in the
1970s, the Hawkes process still remains widely employed to model event dy-
namics in diverse domains, including finance (Bacry & Muzy, 2014), crime
analysis (Mohler et al., 2011), user recommendations (Du et al., 2015), seis-
mology (Ogata, 1988; Rotondi & Varini, 2019), and information diffusion on
social media (Rizoiu et al., 2017b).

A key challenge in MTPP modeling amounts to specifying a parametric form
of the model that is flexible enough to capture the complex cross-temporal
dependencies between past event occurrences and future ones. However, early
classical parametrizations often rely on strong modeling assumptions regard-
ing the underlying process, which can limit their ability to capture general
dynamics of events arrivals (Mei & Eisner, 2017). For instance, the Hawkes
process assumes that past observations have an exciting influence on future
occurrences, which prevents its effective deployment to scenarios that include
complementary effects, e.g. when past events can also have an inhibiting in-
fluence on future ones. To address these limitations, deep learning techniques
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have been introduced into the MTPP literature, enabling the design of a more
flexible class of neural MTPP models. In contrast to their classical counter-
parts that generally require tedious feature engineering, these neural MTPP
models have the potential to learn any patterns in a purely data-driven manner
(Shchur, 2022).

Since its introduction by the seminal work of Du et al. (2016), the field of neural
MTPP modeling has experienced rapid development, with the emergence of
numerous novel architectures (Shchur et al., 2020a; Zuo et al., 2020; Yang et al.,
2022; Li et al., 2023) and applications (Upadhyay et al., 2018; Trivedi et al.,
2019; Gupta et al., 2021; Shchur et al., 2021a). However, despite witnessing
significant progress in recent years, neural MTPP modeling still faces a number
of open challenges that warrant further exploration from the community. In
the following section, we outline these challenges in terms of concrete research
questions, and provide an overview of our contributions towards addressing
them.

1.1. Challenges and Aims

To capture complex dependencies between event occurrences, neural MTPP
models typically involve a combination of different architectural components,
each tailored to model different aspects of a sequence. Improvements with
respect to existing baselines are usually obtained by proposing alternatives to
either of these components, often drawing inspiration from advances in deep
learning techniques. For instance, one can replace a Recurrent Neural Network
(RNN) architecture (Du et al., 2016; Mei & Eisner, 2017) with a self-attentive
one (Zuo et al., 2020; Zhang et al., 2020), or choose to parametrize a certain
MTPP function that leads to useful properties, such as reduced computational
costs (Omi et al., 2019) or closed-form sampling (Shchur et al., 2020a,b).

However, as pointed out by Shchur et al. (2021b), “new architectures often
change all these components at once, which makes it hard to pinpoint the source
of empirical gains”. Moreover, the baselines against which a newly proposed
architecture is compared, as well as the datasets employed and the experi-
mental setups, often differ between studies, which renders a fair comparison
even harder. Identifying these sources of improvements in predictive accuracy
is further challenged by the use of metrics that do not always clearly isolate
where progress is being made. Implicitly, fitting marked event sequence data
involves learning joint distributions of arrival times and marks, conditional
on the observed history. These joint distributions can be factorized into the
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product of a time predictive distribution and a mark predictive distribution.
In practice, the Negative Log-Likelihood (NLL) computed over test sequences
is often used to evaluate the predictive performance of neural MTPP mod-
els. However, reporting a single NLL value encompasses the contributions of
both of these predictive distributions simultaneously, which makes it difficult
to assess model performance with respect to each task separately.

Besides evaluation, another challenge concerns the way neural MTPP models
are learned from data. As mentioned, learning a neural MTPP model with
the NLL objective function can be interpreted as a two-task learning problem,
where the time prediction task involve learning a time predictive distribution,
while the mark prediction task involves learning a mark predictive distribu-
tion. As common practice in the neural MTPP literature, these two tasks
are optimized jointly on a common set of shared parameters. While parame-
ter sharing between tasks can sometimes enhance training efficiency (Standley
et al., 2020), it may also result in performance degradation when compared to
training each task independently. A major challenge in the simultaneous opti-
mization of multi-task objectives is the issue of conflicting gradients (Liu et al.,
2021a). This term describes situations where task-specific gradients point in
opposite directions. When such conflicts arise, gradient updates tend to favor
tasks with larger gradient magnitudes, thus hindering the learning process of
other concurrent tasks and adversely affecting their performance. Although the
phenomenon of conflicting gradients has been studied in various fields (Chen
et al., 2018, 2020; Yu et al., 2020; Javaloy & Valera, 2022; Shi et al., 2023), its
impact on the training of neural MTPP models remains unexplored.

Additionally, while the NLL is a proper scoring rule that enables comparison
across different baselines, it is difficult to interpret as a standalone metric
(Shchur et al., 2021b). Probabilistic calibration, in the context of forecasting
theory, refers to the statistical consistency between the predictive distributions
and the realized outcomes. It is a desirable property that any competent or
ideal forecaster should possess, fostering trust in the predictions returned by
the model (Guo et al., 2017; Dheur & Ben Taieb, 2023). Nonetheless, with a
few exceptions exemplified by the works of Xiao et al. (2017a); Zhang et al.
(2020); Lin et al. (2022), the probabilistic calibration of both time and mark
predictive distributions has been generally overlooked in the context of neural
MTPP models. These considerations collectively highlight the necessity of
carefully designed experimental studies to accurately evaluate the true benefits
and limitations of current neural MTPP models.
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A final challenge relates to the reliability of the predictions extracted from
the trained MTPP models. Consider a critical application domain, such as
diagnostic medicine, where the goal is to estimate the arrival time and mark
of a future physical condition based on the patient’s medical history. In such
context, returning a single-valued prediction may be deemed unsatisfactory for
safe decision-making, and we may strive instead to provide a high probability
prediction region for the next arrival time, mark, or both, that faithfully reflects
the uncertainty in the predictions. This region should typically include a subset
of potential values that are highly likely to occur, aligned with a nominal
probability coverage level. However, due to model misspecification or lack of
training data, the MTPP model may provide a poor approximation of the
unknown underlying process. Consequently, prediction regions derived solely
from the model’s estimates may be unreliable, failing to accurately reflect
the true underlying uncertainty. To address this challenge, we build on the
statistically sound framework of Conformal Prediction (CP) (Vovk et al., 2005)
to construct reliable prediction regions for arrival times and marks of future
events.

CP is a principled framework that enables the construction of distribution-
free prediction regions, offering a finite-sample coverage guarantee even when
the base model is unreliable. CP has found successful applications in a broad
spectrum of machine learning fields, such as computer vision (Angelopoulos
et al., 2021), natural language processing (Campos et al., 2024), or time series
forecasting (Gibbs & Candès, 2021; Zaffran et al., 2022). Nevertheless, to
the best of our knowledge, this thesis is the first work to connect the fields
of CP with neural MTPP modeling. It should be noted that Candès et al.
(2023) and Gui et al. (2023) explored CP in the closely related field of survival
analysis. However, these works have primarily focused on univariate survival
times, whereas MTPPs also involve categorical marks, making their settings
not directly transferable to ours.

1.2. Objectives and Research Questions

To address the challenges discussed in the previous section, we make three main
contributions in this thesis. First, we introduce novel neural MTPP models for
probabilistic predictive modeling of continuous-time event data. Second, we
present new training strategies for neural MTPP models designed to improve
their predictive accuracy on the time and mark prediction tasks. Third, we
develop reliable and distribution-free conformal methods for quantifying the
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uncertainty in the predictions extracted from neural MTPP models.

A first step towards these contributions involves identifying the limitations of
existing neural MTPP models in terms of predictive accuracy across a wide
range of real-world scenarios. After an overview of the fundamental concepts
in MTPP modeling and uncertainty quantification in Chapter 2, we address
our first research question.

Research Question 1: What architectural design choices lead to significant
improvements in predictive accuracy for neural MTPP models?

In Chapter 3, we present how neural architectures can be combined with the
core principles of MTPP theory to develop flexible neural MTPP models. To
assess their predictive accuracy across a wide range of real-world scenarios,
we then perform a large-scale experimental study on 15 real-world event se-
quence datasets in a carefully designed and unified setup. For thoroughness,
our study also includes classical MTPP models as well as synthetic datasets.
Specifically, we study the influence of each major architectural component on
model performance, from the perspectives of both time and mark prediction
tasks. Finally, we employ standard metrics and evaluation tools borrowed
from the forecasting literature to evaluate the calibration of neural MTPP
models. Our extensive set of experiments reveals that modern neural MTPP
models frequently demonstrate limitations both in terms of predictive accu-
racy and calibration. In Chapter 4, we outline an underlying cause of this
problem: common parametrizations of neural MTPP models frequently lead
to the emergence of conflicting gradients when trained on the NLL, which neg-
atively impact predictive performance on both time and mark prediction tasks.
Investigating deeper into this challenge leads to our second research question.

Research Question 2: How can conflicting gradients be effectively mitigated
during the training of neural MTPP models?

To prevent the emergence of conflicting gradients, we introduce novel parametriza-
tions for existing neural MTPP models, allowing for separate modeling and
training of time and mark prediction tasks. Additionally, we present a simple,
yet effective parametrization for the mark predictive distribution that relaxes
the assumption of conditional independence between arrival times and marks
made in Du et al. (2016) and Shchur et al. (2020a). Through extensive experi-
ments, we demonstrate that our framework effectively prevents the emergence
of conflicting gradients during training, thereby enhancing the predictive ac-
curacy of the models. Unfortunately, improved predictive accuracy does not
guarantee reliability of the estimates, meaning that prediction regions derived
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directly from the model may still poorly reflect the true uncertainty. This
concern brings us to our third and final research question.

Research Question 3: How can we generate informative and distribution-free
prediction regions for future event times and marks with finite-sample coverage
guarantees even when the neural MTPP model is unreliable?

In Chapter 5, we develop more reliable methods for uncertainty quantification
in neural MTPP models via the framework of conformal prediction. A primary
objective is to generate distribution-free joint prediction regions for events’ ar-
rival times and marks, with a finite-sample marginal coverage guarantee. In
this context, a key challenge is to handle a bivariate response composed of
a continuous arrival time and a discrete mark, without making distributional
assumptions. We first consider a simple but overly conservative approach that
combines individual prediction regions for the event’s arrival time and mark.
Then, we introduce a more effective method based on bivariate highest density
regions derived from the joint predictive density of arrival times and marks.
By leveraging the dependencies between these two variables, this method ex-
cludes unlikely combinations of the two, resulting in sharper prediction regions
while still attaining the pre-specified coverage level. We also explore the gen-
eration of individual univariate prediction regions for events’ arrival times and
marks through conformal regression and classification techniques. Moreover,
we evaluate the stronger notion of conditional coverage. Finally, through ex-
tensive experimentation on both simulated and real-world datasets, we assess
the validity and efficiency of these methods.
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1.3. Contributions

The contents of Chapters 3 to 5 are primarily based on research papers sub-
mitted or published in international peer-reviewed conferences and journals.
For each publication, we include a link to a public repository that contains
the personal codebase allowing to reproduce all experiments presented in this
thesis.

• Chapter 3: On the Predictive Accuracy of Neural MTPP Models.

1. Tanguy Bosser & Souhaib Ben Taieb (2023a). On the Predictive
Accuracy of Neural Temporal Point Process Models for Continuous-
time Event Data. In Transactions of Machine Learning Research
(TMLR). Survey Certification.

– Repository: https://github.com/tanguybosser/ntpp-tmlr2023.

• Chapter 4: Preventing Conflicting Gradients in Neural MTPP Models.

1. Tanguy Bosser & Souhaib Ben Taieb (2024b). Preventing Con-
flicting Gradients in Neural Marked Temporal Point Processes. Un-
der Review for Transactions in Machine Learning Research (TMLR).

– Repository: https://github.com/tanguybosser/grad_tpp.

2. Tanguy Bosser & Souhaib Ben Taieb (2023b). Revisiting the
Mark Conditional Independence Assumption in Neural Marked Tem-
poral Point Processes. In Proceedings of the 31st European Sympo-
sium on Artificial Neural Networks, Computational Intelligence and
Machine Learning (ESANN).

– Repository: https://github.com/tanguybosser/grad_tpp.

• Chapter 5: Distribution-free Conformal Prediction Regions for Neural
MTPP Models.

1. Victor Dheur, Tanguy Bosser1, Rafael Izbicki and Souhaib Ben
Taieb (2024a). Distribution-Free Conformal Joint Prediction Re-
gions for Neural Marked Temporal Point Processes. In Machine
Learning, 113, 7055–7102.

– Repository: https://github.com/tanguybosser/conf_tpp.

1Victor Dheur and Tanguy Bosser contributed equally to this work.
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12 Background on MTPPs and Uncertainty Quantification

The questions addressed in this thesis are at the intersection of Temporal Point
Processes (TPP) and approaches to quantify the uncertainty of probabilistic
models. This chapter therefore aims to provide the reader with a working
understanding of the foundational concepts from both domains that will be
built upon in subsequent chapters.

Specifically, we begin our discussion with TPP, a framework for modeling sys-
tems that generate variable-length event sequences in continuous-time. We
present how the evolution of such systems can be fully characterized by adopt-
ing an auto-regressive perspective, together with the definitions of classical
TPP models. We then show how we can learn these TPP models from event
sequence data, and how the learned model can then be used for downstream
prediction tasks on new sequences.

In the second part of the chapter, we pursue our discussion with approaches to
quantify the uncertainty in the predictions made by any arbitrary probabilistic
model. Uncertainty Quantification (UQ) is a broad and active field of research,
with numerous methods and applications extending beyond the scope of this
dissertation. Consequently, for the sake of conciseness, we will narrow our
discussion to the concepts of probabilistic calibration and conformal prediction.

For additional material on TPP, the reference books of Daley & Vere-Jones
(2003) and Daley & Vere-Jones (2008) provide a thorough overview of the
theory of point processes, while Laub et al. (2015); Rasmussen (2018); De
et al. (2019); Shchur et al. (2021b) and Shchur (2022) offer a more gentle
introduction. For further references on uncertainty quantification, the book of
Ghanem et al. (2017) proposes a broad overview of the key concepts pertaining
to the field, while the recent surveys of Abdar et al. (2021) and Gawlikowski
et al. (2023) focus on the application of uncertainty quantification to deep
neural networks.

2.1. Marked Temporal Point Processes

A Marked Temporal Point Process (MTPP) is a random process whose
realization is a sequence of n events S = {ei = (ti, ki)}ni=1, where the number
n of events is random. Each event ei ∈ S is an ordered pair with an arrival
time ti ∈ [0, T ] (with t0 = 0) and a mark ki belonging to some mark space K.
Depending on the problem considered, K can either be continuous (e.g. the
price of an item), or discrete (e.g. the category of an item). In this thesis, we
focus exclusively on categorical marks, and assume that ki ∈ K = {1, ...,K}
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with K = |K| the size of the mark space K.

The arrival times form a sequence of strictly increasing random values observed
within a specified time interval [0, T ], i.e. 0 ≤ t1 < t2 < . . . < tn ≤ T . Note
that we will frequently use the equivalent representation ei = (τi, ki), where
τi = ti− ti−1 ∈ R+ is an event inter-arrival time, i.e. the elapsed time between
two events. Alternatively, a realization of a MTPP can be represented by a
counting process N(t) =

∑K
k=1Nk(t) with

Nk(t) =
n∑

i=1

1(t ≥ ti ∩ kj = k) for t ∈ [0, T ], (2.1)

where 1(·) is the indicator function that equals 1 if its argument is true, 0
otherwise. Essentially, Nk(t) counts the number of events of mark k in S
that occurred prior to t, while N(t) counts the total number of events that
occurred prior to t. Note that throughout this dissertation, we make the usual
assumption that the MTPP is simple, i.e. two arrival times coincide with
probability 0, meaning that the events are strictly ordered in time.

Figure 2.1 illustrates the realization of a MTPP in [0, T ], both from the per-
spectives of the sequence and counting process representations. This realization
can, for instance, represent the activity of an individual on an online shopping
platform. In such scenario, t1 to t5 ∈ R+ would be the times at which the
purchases are made, while k1 to k5 ∈ K would correspond to the categories
of the items bought with, e.g. K = {■ = toy,• = shoe, ■ = book}. Each
time a new item is purchased, the counting process associated to its category
is simply incremented by one unit.

2.1.1 Characterizing a MTPP

There are several ways to fully characterize the occurrences of arrival times
and marks in an MTPP. As a first approach, we can characterize the pro-
cess by specifying the distributions of events conditional on their pasts. Let
fi(e|e1, ..., ei−1) denote the Probability Density Function (PDF) of an event
ei conditional on all preceding occurrences {e1, ..., ei−1}. By the chain rule,
the PDF f(S) of a realization S writes

f(S) = f1(e)f2(e|e1)...fn(e|e1, ...en−1), (2.2)

which essentially reveals that a MTPP can be treated as an auto-regressive
process, where events are generated one by one conditional on all previous
observations. Consequently, by specifying a PDF fi(e|e1, ..., ei−1) for each
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Figure 2.1: Realization of a MTPP with K = 3 in [0, T ] viewed as a sequence
S = {(ti, ki)} for i = 1, .., 5 (top), and as K counting processes Nk(t) for
t ∈ [0, T ] (bottom).

event ei ∈ S, and by stitching these conditional PDFs together, the sequence
{f1(e), f2(e|e1), ..., fn(e|e1, ..., en−1)} fully characterizes event occurrences in
a MTPP.

Let Ht = {(tj , kj) ∈ S | tj < t} denote the history of the process
at time t, i.e. all events in S that occurred prior to t, meaning that
fi(e|e1, ..., ei−1) = fi(e|Ht). As fi(e|Ht) defines a joint PDF for the bivari-
ate event e = (t, k) conditional on the history, it will be referred to as the joint
PDF of arrival times and marks that defines

fi(t, k|Ht)dt = P[Ti ∈ [t, t+ dt],Ki = k|Ht], (2.3)

where dt refers to an infinitesimal change in t, and Ti and Ki are the random
variables associated to the arrival time and mark of the ith event, respectively.
In other terms, the joint PDF specifies the instantaneous probability to observe
an event of mark k at time t, conditional on Ht. For clarity, we will use the
notation "∗" of Daley & Vere-Jones (2008) to indicate dependence on Ht,
i.e. f∗i (t, k) = fi(t, k|Ht). Additionally, we will omit the suffix "i" from the
notations, implying that a function will be systematically defined for the ith
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event in S, i.e. f∗(t, k) = f∗i (t, k). We can further factorize the joint PDF as

f∗(t, k) = f∗(t)p∗(k|t), (2.4)

where f∗(t) is the PDF of arrival times, and p∗(k|t) is the conditional Proba-
bility Mass Function (PMF) of marks, and are both conditional on the history
Ht. Equivalently, we have

f∗(t, k) = f∗(t|k)p∗(k), (2.5)

where f∗(t|k) is the conditional PDF of arrival times, while p∗(k) is the
marginal PMF of marks. From f∗(t, k), we can also define the joint Cumulative
Distribution Function (CDF) of arrival times and marks as

F ∗(t, k) =

∫ t

ti−1

f∗(s, k)ds = P [Ti ∈ [ti−1, t],Ki = k|Ht] , (2.6)

which corresponds to the probability of observing an event of mark k in the
interval [ti−1, t], conditional on Ht. As previously mentioned, other functions
than the joint PDF or CDF of arrival times and marks can be employed to
fully characterize future event occurrences in a MTPP from past observations.
Specifically, an alternative consists in specifying K marked intensity functions
λ∗k(t), which are formally defined for t > ti−1 as

λ∗k(t) = lim
∆t↓0

E[Nk(t+∆t)−Nk(t)|Ht]

∆t
=

f∗(t, k)

1− F ∗(t)
, (2.7)

where F ∗(t) =
∑K

k=1 F
∗(t, k) is the CDF of arrival times. In essence, the

marked intensity λ∗k(t) gives the expected occurrence rate of events of mark k
per unit of time, conditional on Ht. In addition, λ∗k(t) possess the following
heuristic interpretation

λ∗k(t)dt ≃ P
[
Ti ∈ [t, t+ dt],Ki = k|Ht, Ti /∈ [ti−1, t]

]
. (2.8)

In other words, λ∗k(t) gives the instantaneous probability of observing the next
event of mark k in an infinitesimal interval around t, conditional on both Ht

and on the fact that the event has not been observed in [ti−1, t]. Similarly to
(2.4), λ∗k(t) can be factorized as

λ∗k(t) =
f∗(t)p∗(k|t)
1− F ∗(t)

= λ∗(t)p∗(k|t), (2.9)
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Figure 2.2: Relations between f∗(t, k), λ∗k(t), F
∗(t, k) and Λ∗

k(t). Drawing in-
spired by Yan (2019b).

where

λ∗(t) =

K∑
k=1

λ∗k(t) =

K∑
k=1

f∗(t, k)

1− F ∗(t)
=

f∗(t)

1− F ∗(t)
, (2.10)

is the ground intensity of the process, i.e. the expected occurrence rate of
events of any mark conditional on Ht. Finally, from λ∗k(t), we can define K
cumulative marked intensity functions for t ≥ ti−1 as

Λ∗
k(t) =

∫ t

ti−1

λ∗k(s)ds, (2.11)

which bears the following relation to f∗(t, k) and λ∗k(t):

f∗(t, k) = λ∗k(t)exp (−Λ∗(t)) , (2.12)

where Λ∗(t) =
∑K

k=1 Λ
∗
k(t) is the cumulative ground intensity functions of the

process. We provide the proof for (2.12) in Appendix B.

We want to stress that any of the functions f∗(t, k), F ∗(t, k), λ∗k(t), and Λ∗
k(t)

can be uniquely retrieved from the others, and hence, they all fully characterize
a MTPP. A graphical representation of the relations between these functions is
presented on Figure 2.2, while Figure 2.3 shows an illustration of their typical
evolutions with time for a MTPP with K = 3 marks.
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As any of the functions f∗(t, k), λ∗k(t), F
∗(t, k) and Λ∗

k(t) uniquely characterize
a MTPP, it also implies that they implicitly define a valid joint distribution
over arrival times and marks. This translates into the following properties
(Rasmussen, 2018; Enguehard et al., 2020):

Property 1. ∀k ∈ K, the joint PDF of arrival times and marks f∗(t, k) verifies

Rf
1 : f

∗(t, k) ≥ 0. (2.13)
Rf

2 :
∫∞
ti−1

K∑
k=1

f∗(s, k)ds = 1. (2.14)

Property 2. ∀k ∈ K, the joint CDF of arrival times and marks F ∗(t, k)
verifies

RF
1 : F ∗(t, k) ∈ [0, 1]. (2.15)

RF
2 : F ∗(ti−1, k) = 0. (2.16)

RF
3 : lim

t→∞

K∑
k=1

F ∗(t, k) = 1. (2.17)

RF
4 : dF ∗(t, k)/dt ≥ 0. (2.18)

Property 3. ∀k ∈ K, the marked intensity functions λ∗k(t) verify

Rλ
1 : λ

∗
k(t) ≥ 0. (2.19) Rλ

2 : lim
t→∞

∫ t
ti−1

λ∗k(s)ds = ∞. (2.20)

Property 4. ∀k ∈ K, the cumulative marked intensity functions Λ∗
k(t) verify

RΛ
1 : Λ∗

k(t) > 0. (2.21)

RΛ
2 : Λ∗

k(ti−1) = 0. (2.22)

RΛ
3 : lim

t→∞
Λ∗
k(t) = ∞. (2.23)

RΛ
4 : dΛ∗

k(t)/dt ≥ 0. (2.24)

Properties Rf
1 , Rf

2 and RF
1 to RF

4 are implied by the definitions of valid PDFs
and CDFs, respectively. Property Rλ

1 results from the definition of λ∗k(t) in
(2.8), while Rλ

2 directly follows from RF
3 . Finally, RΛ

1 and RΛ
2 can be deduced

from Rλ
1 and Rλ

2 , respectively, while RΛ
3 and RΛ

4 directly results from RF
3 and

RF
4 . As we will see in the next sections, keeping these properties in mind is

important when specifying a MTPP model: the chosen parametrization must
define a valid joint distribution over arrival times and marks, meaning that we
must ensure that the above properties are always satisfied.

Remark 1. By stating Properties 1-4, we consider that the MTPP is non-
terminating, meaning that a new event will arrive eventually in the future with
probability 1. This consideration is formally captured in Rf

2 , RF
3 , Rλ

2 , and RΛ
3 .
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Figure 2.3: Illustration of the evolution of f∗(t), λ∗(t), F ∗(t), and Λ∗(t) as
a function of t for a MTPP with K = 3 marks. Here, t4 corresponds to the
arrival time of the last observed event.

Conversely, for a terminating MTPP, we would instead assume that the process
eventually stops at some point in the future with probability p < 1, and that
no more events are to be recorded. For such terminating MTPP, Rf

2 , RF
3 , Rλ

2 ,
and RΛ

3 as defined in the above must be adapted to

Rf
2 :
∫∞
ti−1

∑K
k=1 f

∗(s, k)ds = 1− p.

RF
3 : lim

t→∞

∑K
k=1 F

∗(t, k) = 1− p.

Rλ
2 : lim

t→∞

∫ t
ti−1

λ∗k(s)ds = −log p.

RΛ
3 : lim

t→∞
Λ∗
k(t) = −log p.

Without loss of generality, we consider exclusively the setting of non-
terminating MTPP in this dissertation, which implies that Properties 1-4 are
systematically satisfied.

2.1.2 Classical Parametrizations of MTPP models

Early developments in MTPP can be traced back to the beginning of the 20th

century, where they originally found applications in modeling the arrivals of
telephone calls (Erlang, 1909) and the decay of radioactive materials (Bateman,
1910). Nevertheless, it is only during the period that followed the second world
war that the field of MTPP theory witnessed substantial growth (Daley & Vere-
Jones, 2008), with subsequent applications to various fields including inventory
control (Morse, 1958), reliability engineering (Cox, 1962; Barlow & Proschan,
1965), neurobiology (Stein, 1965; Fatt & Katz, 1965), and seismology (Ogata,
1988, 1998).
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In this section, we review several instances of these early models, including
their basic properties, and how they can be used as building blocks to define
more complex models. The term "classical" is used here to distinguish these
seminal models from their neural counterparts, which will be introduced later
in Chapter 3. For each process, we first consider the unmarked case, i.e. when
the process does not include marks, meaning that a realization is characterized
only by a sequence of arrival times. Their extensions to a marked scenarios
directly follows in the discussion.

Homogeneous Poisson Process (HPP) (Kingman, 1992) is the earliest
and simplest TPP model, characterized by a constant intensity function inde-
pendent of the history:

λ∗(t) = λ, (2.25)

where λ ∈ R+. Given the simple expression of the intensity in (2.25), the
following important properties can be derived for the HPP:

1. The inter-arrival times τ ∈ R+ are Independent and Identically Dis-
tributed (i.i.d.) random variables which follow an exponential distribu-
tion with mean 1/λ, i.e.

f∗(τ) = f(τ) = λ exp(−λτ). (2.26)

2. The number of events nab = N(b) − N(a) in any interval [a, b] with
a < b ≤ T follows a Poisson distribution with rate λ(b− a), i.e.

P (N = nab) =
λ(b− a)nab

nab!
e−λ(b−a), (2.27)

where nab! = nab(nab − 1)(nab − 2)...1 is the factorial of nab.

3. The number of events in two disjoints intervals are independent, also
known as the independent increment property.

4. The HPP is memoryless, meaning that the distribution of inter-arrival
times depends only on the current time, and not on any past information.
Suppose that we are waiting for the arrival of a new event, and that τ ′ has
already elapsed since the last event ti−1, i.e. no event has been observed
in [ti−1, ti−1 + τ ′]. For an additional waiting time τ ′′, the memoryless
property of the HPP states that

P(τ > τ ′ + τ ′′|τ > τ ′) = P(τ > τ ′′), (2.28)
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Figure 2.4: Illustration of the realization of a HPP with K = 2 marks and its
marked intensity functions over time.

where τ refers to the random variable associated to the next inter-arrival
time. In other words, the probability to wait an additional τ ′′ for the
event to arrive when having already waited τ ′ is the same as the proba-
bility of waiting τ ′′ from the start.

These properties motivate the HPP being sometimes referred to as a purely
or completely random process (Daley & Vere-Jones, 2008). Intuitively, events
materialize at constant rate λ, creating sequences of arrival times evenly scat-
tered along the continuous timeline. Extending the HPP to a marked scenario
is easily achieved by defining K marked intensity functions that are constant
over time, i.e.

λ∗k(t) = λk, (2.29)

where k ∈ K and λk ∈ R+. This leads to the following expression for the joint
PDF of inter-arrival times and marks:

f∗(τ, k) = f(τ, k) = λkexp (−λτ) , (2.30)

where λ =
∑K

k=1 λk. Figure 2.4 illustrates a realization of a HPP with K = 2
marks.

Inhomogeneous Poisson Process (IPP) (Daley & Vere-Jones, 2008) can
be interpreted as a generalization of the HPP, where the intensity function now
evolves over time:

λ∗(t) = λ(t), (2.31)

for some function λ(t) ≥ 0 ∀t. Note that, as in (2.25), the intensity function
in (2.31) remains independent of the history Ht. However, by allowing λ(t) to
vary with time, the IPP can capture changes in the rate of arrivals of events.
For instance, when recording check-ins to restaurant open all day, one rightfully
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Figure 2.5: Illustration of a realization of a IPP with K = 2 marks and evolu-
tion of its marked intensity functions λ∗k(t) over time.

expects a greater number of events to occur during the day than during the
night. Contrasting with the HPP, the IPP is able to capture such periodic
fluctuations in the evolution of a system of interest.

Given the temporal evolution of the conditional intensity functions, the first
two properties of the HPP are no longer valid, and need to be adjusted accord-
ingly. Specifically, for a IPP, these properties become:

1. The inter-arrival times τ are independent random variables, but they are
no longer identically distributed. In particular, if ti−1 is the arrival time
of the last observed event, then the PDF of the next inter-arrival time τi
is given by

f∗(τ) = f(τ) = λ(ti−1 + τ)exp
(
−
∫ τ

0
λ(ti−1 + s)ds

)
, (2.32)

which depends on where ti−1 materialized on the continuous timeline.

2. The number of events nab = N(b) − N(a) in any interval [a, b] with
a < b ≤ T follows a Poisson distribution with rate

∫ b
a λ(s)ds, i.e.

P (N = nab) =

(∫ b
a λ(s)ds

)nab

nab!
e−

∫ b
a λ(s)ds. (2.33)

The time-varying intensity in (2.34) also causes the IPP to lose the memoryless
property of the HPP. However, the independent increment property is retained
by the process, meaning that the number of points in two disjoint intervals
remain independent random variables.
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Similarly to the HPP, we can define a marked version of the IPP by specifying
K marked intensity functions:

λ∗k(t) = λk(t), (2.34)

for some functions λk(t) ≥ 0 with t ∈ R+ and k ∈ K. Figure (2.5) illustrates
a realization of a marked IPP with K = 2 marks.

Renewal process (Cox, 1962). Recall that for a HPP, the inter-arrival times τ
are i.i.d. random variables following an exponential distribution. The renewal
process generalizes this concept to any arbitrary distribution independent of
Ht, i.e.

f∗(τ) = f(τ), (2.35)

for some PDF f(·) defined on R+, such as the log-normal, Weibull or Gompertz
distributions. Naturally, the exponential distribution in (2.26) retrieves the
definition of the HPP. Given F (τ) =

∫ τ
0 f(s)ds, and assuming that ti−1 is the

last observed event, the ground intensity function of a renewal process can be
retrieved as

λ(t) = λ(ti−1 + τ) =
f(τ)

1− F (τ)
. (2.36)

In a marked scenario, we assume that the bivariate events (τ, k) follow some
arbitrary joint distribution independent of the history, with joint PDF and
marked intensities expressed as

f∗(τ, k) = f(τ, k) = f(τ)p(k|τ), (2.37)

λ∗k(t) = λk(ti−1 + τ) =
f(τ)p(k|τ)
1− F (τ)

, (2.38)

where (2.37) and (2.38) are obtained from (2.4) and (2.9), respectively. Note
that in the general case, while the pairs (τ, k) are assumed to be i.i.d. for a
renewal process, p(k|τ) indicates that the existence of a dependency between
inter-arrival times and marks is allowed. However, for simplicity, it is often
assumed that these two quantities are independent of each other, yielding
p(k|τ) = p(k) (Pandey & van der Weide, 2017). Figure 2.6 illustrates the
evolution of λk(t) as a function of time for a renewal process with K = 2
marks, where f(τ) is defined as a Log-N (0, 1) distribution, i.e. a log-normal
distribution with mean 0 and variance 1.

In a broad sense, the term "renewal" underlines that the process resets itself
every time a new event occurs. Typical examples of application of renewal
processes appear in reliability engineering, where one may be interested in
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Figure 2.6: Illustration of a realization of a renewal process with K = 2 marks
and evolution of the corresponding marked intensity functions λ∗k(t). We as-
sume that f(τ) is defined as a Log-N (0, 1) distribution with p(k = •) = 0.7
and p(k = ■) = 0.3.

modeling the time between failures of industrial equipment. For instance,
suppose that an industrial machine is prone to K different types of failures. If
the time between two failures of any types follows the same distribution with
density f(τ), and if the machine is integrally replaced any time a failure occurs
(i.e. times to failures are independent), then the sequence of times and types
of failures follows a renewal process.

Hawkes process (Hawkes, 1971; Liniger, 2009). In the processes considered
thus far, events have been systematically assumed to arise independently of
one another. However, in many real-world scenarios, we may reasonably as-
sume that past observations directly influence the evolution of a system. For
instance, we may expect that observed events increase the likelihood of future
occurrences. In particular, earthquakes are known to generate aftershocks that
can trigger the arrival of new earthquakes. The Hawkes process, also some-
times referred to as self-exciting process, explicitly models such behavior by
defining an intensity function that jumps abruptly for each new observation in
Ht, i.e.

λ∗(t) = λ+
∑
tj∈Ht

ψ(t− tj), (2.39)

where λ ∈ R+ denotes a baseline intensity rate, and ψ : R+ → R+ is a general
formulation of the so-called triggering kernel. A typical choice for ψ is the
exponential triggering kernel (Hawkes, 1971; Ogata, 1988; Embrechts et al.,
2011) defined as

ψ(t− tj) = γ exp (−β(t− tj)) , (2.40)
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where β ∈ R+ and γ ∈ R+. Under such kernel parametrization, the intensity
function initially starts at λ, and jumps by the quantity γ each time a new event
occurs, leading to the "self-exciting" denomination of the Hawkes process.
Then, the excitation induced at time tj reduces exponentially to the initial
baseline rate λ as time rises, with the reduction controlled by the parameter β.
Another popular choice for ψ is the power-law kernel, which may be defined
as (Rizoiu et al., 2017a)

ψ(t− tj) =
γ

(t− tj + ω)β+1
, (2.41)

where α, β, ω > 0. The power-law kernel found numerous practical use cases,
notably for modeling earthquake aftershocks in seismology (Ogata, 1988), or
for modeling information diffusion on social media (Rizoiu et al., 2017b).

The term b =
∫∞
0 ψ(s)ds denotes the branching ratio of the Hawkes process,

and determines the expected number of events triggered by a single event. If
b < 1 (i.e. each event triggers less than one event on average), the Hawkes
process is called stationary, meaning that the total number of events remains
bounded over time. In contrast, when b > 1, the Hawkes process becomes non-
stationary, potentially leading to an infinite growth of the intensity in (2.42)
and to an explosion of events.

When marks are available, the conditional intensities of the marked Hawkes
process would take the form

λ∗k(t) = λk +
K∑

k′=1

∑
(tj ,kj)∈Hk′

t

ψk,k′(t− tj), (2.42)

where now λk ∈ R+ and Hk
t = {(tj , kj) ∈ S | tj < t, kj = k} refers to the set of

events of mark k that occurred prior to t. Here λk ∈ R+ is a baseline intensity
rate for each mark k, and ψk,k′ denotes a marked extension of the triggering
kernel. For instance, the exponential kernel in (2.40) would now write

ψk,k′(t− ti−1) = γk,k′exp
(
−βk,k′(t− ti−1)

)
, (2.43)

with

γ =

γ1,1 . . . γ1,K
...

. . .
...

γK,1 . . . γK,K

 ∈ RK×K
+ , β =

β1,1 . . . β1,K
...

. . .
...

βK,1 . . . βK,K

 ∈ RK×K
+ . (2.44)
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Figure 2.7: Illustration of a realization of a Hawkes process with K = 2 marks
and evolution of the corresponding marked intensity functions λ∗k(t).

The parameters γk,k′ and βk,k′ inherit the same interpretation as for the un-
marked case, with the difference that they now capture the influence (i.e. ex-
citation and decay) of an event of mark k on another event of mark k′. Figure
2.7 illustrates a typical realization of a Hawkes process with K = 2 marks. As
observed, the Hawkes process results in clustered points patterns, where the
occurrence of an event immediately increases the likelihood of observing a new
one soon after.

On a final note, although both the exponential and power-law kernels enable
to model self-exciting behaviors, there exists a key difference between the two.
Indeed, a Hawkes process with exponential kernels verifies the Markov property
(Oakes, 1975), meaning that the intensity λ∗k(t+∆t) at time t+∆t only depends
on the current intensity λ∗k(t), and a function of the elapsed time since the last
event t+∆t− ti−1. On the contrary, a Hawkes process with power-law kernels
cannot be mapped in such a way, and hence lacks the Markov property (Bacry
& Muzy, 2014).

Self-correcting process (Isham & Westcott, 1979) In a Hawkes process, the
occurrence of an event increases the likelihood of subsequent events occurring
shortly thereafter. What if we were instead interested in modeling the opposite
behavior, i.e. observations that decrease the likelihood of new events rather
than increase it? This desideratum can be precisely achieved by defining a
self-correcting process, whose intensity function takes the form

λ∗(t) = exp

λt− ∑
tj∈Ht

γ

 , (2.45)
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Figure 2.8: Illustration of a realization of a self-correcting process with K = 2
marks and evolution of the corresponding marked intensity functions λ∗k(t).
For the sake of simplicity, we assume independence between events of different
marks.

where λ, γ > 0. The name self-correcting relates to the process balancing two
complementary effects that regulate event occurrences: in the absence of ob-
servations, the intensity rises exponentially over time, increasing the likelihood
of new events. Then, when a new event materializes, the intensity is instantly
dropped by the amount exp(−γ), ultimately decreasing their respective likeli-
hood. The combinations of these two effects enable the process to correct itself
and maintain a certain regularity.

In a marked scenario, the marked intensity functions would write

λ∗k(t) = exp

λkt− K∑
k′=1

∑
(tj ,kj)∈Hk′

t

γk′k

 , (2.46)

where λk > 0 and γk,k′ ∈ R+. Drawing a parallel with the Hawkes process,
the parameter γk,k′ now captures the correcting influence of an event of mark
k′ on the intensity of mark k. A realization of a self-correcting process with
K = 2 marks is illustrated on Figure 2.8. As observed, the regulating behavior
of a self-correcting process leads to regular spacing between events.

The self-correcting process has been used in situations where events tend to
have an inhibiting influence on future realizations. For instance, the stress
release of a large magnitude earthquake is expected to decrease the likelihood
of observing a new occurrence soon after (Ogata & Vere-Jones, 1984), or the
chances of criminals re-offending diminish once they have been arrested (Altieri
et al., 2023).
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Remark 2. (Superposition of independent processes) Suppose that we have
access to two independent processes N1(t) and N2(t), whose intensity func-
tions are λ∗,1(t) and λ∗,2(t), respectively. It turns out that the superposition
of these two processes yields a new process N(t) = N1(t) + N2(t) whose in-
tensity function is given by the sum of the intensity of each individual process,
i.e. λ∗(t) = λ∗,1(t) + λ∗,2(t) (De et al., 2019). This implies that we can
seamlessly design new models from the superposition of any of the processes
defined previously, allowing to capture more complex dynamics. For instance,
Schoenberg & Bolt (2000); Rotondi & Varini (2019) combined self-correcting
and self-exciting processes to jointly model large-magnitude earthquakes and
their aftershocks, while Xu et al. (2017) superposed Hawkes processes to solve
the cold-start problem in recommendation systems.

2.1.3 Learning a MTPP Model from Event Sequence Data

Suppose that we observe a dataset of training sequences Strain = {S1, ...,SL}
where each sequence Sl = {(ti,l, ki,l)}nl

i=1 comprises nl events with arrival
times observed within the interval [0, T ], and l = 1, ..., L. Equivalently,
τi,l = ti,l − ti−1,l for i = 2, ..., nl and τ1,l = t1,l. We assume that each of
these sequences was generated independently from some ground-truth MTPP,
e.g. a marked Hawkes process from Section 2.1.2. To enable inference on new
sequences, we want to learn a model λ∗k(t;θ), Λ

∗
k(t;θ), f

∗(τ, k;θ) or F ∗(τ ;θ)
with learnable parameters θ ∈ Θ from Strain, where Θ denotes the parame-
ter space. For instance, if we were to parametrize a marked Hawkes process
with exponential kernels in (2.42)-(2.43), then θ = {λ,γ,β} with λ ∈ RK

+ ,
γ ∈ RK×K

+ and β ∈ RK×K
+ . As previously discussed, we have to keep in mind

that the chosen parametrization must define a valid joint distribution over ar-
rival times and marks—the properties enumerated in Section 2.1.1 must always
be satisfied.

Given a valid parametrization of a MTPP model, we often use MLE to learn the
parameters θ. For instance, consider a parametrization of f∗(τ, k;θ). Given
the training sequences Strain, the likelihood function is given by

L(θ;Strain) =

L∏
l=1

[
nl∏
i=1

f∗(τl,i, kl,i;θ)

]
(1− F ∗(T ;θ)). (2.47)

where F ∗(T ;θ) =
∑K

k=1 F
∗(T, k;θ) accounts for the absence of events in each

interval (tl,n, T ].
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Taking the negative log of (2.47) finally yields the Negative Log-Likelihood
(NLL) objective function:

L(θ;Strain) = − 1

L

L∑
l=1

[
nl∑
i=1

log f∗(τl,i, kl,i;θ)− log(1− F ∗(T ;θ))

]
, (2.48)

= − 1

L

L∑
l=1

[
nl∑
i=1

log f∗(τl,i;θ) + log p∗(kl,i|τl,i;θ)

− log(1− F ∗(T ;θ))

]
, (2.49)

where we used the factorization in (2.4) between lines (2.48) and (2.49). This
objective can be equivalently expressed by means of other functions charac-
terizing the MTPP. If one chooses instead to parametrize λ∗k(t;θ) or Λ∗

k(t;θ),
then the NLL objective can be rewritten as

L(θ;Strain) = − 1

L

L∑
l=1

[
nl∑
i=1

[
log λ∗kl,i (tl,i;θ)− Λ∗(tl,i;θ)

]
− Λ∗(T ;θ)

]
(2.50)

= − 1

L

L∑
l=1

[
nl∑
i=1

[
log λ∗ (tl,i;θ) + log p∗(kl,i|τl,i;θ))− Λ∗(tl,i;θ)

]
− Λ∗(T ;θ)

]
, (2.51)

where the absence of observations in the intervals (tl,n, T ] is now accounted
for by Λ∗(T ;θ) =

∑K
k=1 Λ

∗
k(T ;θ). Finally, learning a MTPP model involves

finding the set of parameters θ̂ that minimizes the objectives in (2.49), (2.50)
or (2.51), i.e.

θ̂ = argmin
θ∈Θ

L(θ;Strain). (2.52)

Unfortunately, solving the optimization problem in (2.52) is only achievable
analytically for simple processes, such as the HPP. Hence, for more complex
MTPP models, optimization must be carried out using numerical optimiza-
tion methods, like mini-batch Stochastic Gradient Descent (SGD) (Ruder,
2017). Let Sb,train ⊂ Strain denote a batch of b training sequences sampled
uniformly at random from Strain, and let ∇θL(θ;Sb,train) denote the gradient
of L(θ;Sb,train), i.e. the vector of partial derivatives of L(θ;Sb,train) with re-
spect to all parameters θ. Starting from an initial state θ(0), mini-batch SGD
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minimizes (2.52) by iteratively updating the parameters θ in the negative di-
rection of the gradient, i.e.

θ(s+1) = θ(s) − η ∇θ(s)L
(
θ(s);Sb,train

)
, (2.53)

where s ∈ N and η > 0 is called the learning rate, which controls the magni-
tude of the update step taken. To solve the optimization problem in (2.52),
the update step in (2.53) is repeated multiple times for Sb,train sampled from
Strain until a minima of the objective function is reached. Provided that η is
sufficiently small (e.g. 10−3), mini-batch SGD is guaranteed to converge to at
least a local minima of L(θ;Strain)

1. In practice, extensions of mini-batch SGD
that promote more stable and faster convergence are frequently used, such as
Adam (Kingma & Ba, 2014), Adagrad (Duchi et al., 2011), Adadelta (Zeiler,
2012), or RMSprop (Hinton, 2018).

Once trained, the MTPP model f(t, k; θ̂)/F ∗(t, k; θ̂)/ λ∗k(t; θ̂)/Λ
∗
k(t; θ̂) with

learned parameters θ̂ can be used for prediction tasks on new sequences, ad-
dressing queries such as “When is the next event likely to occur?”, “What will
be the type of the next event, given that it occurs at a certain time t?” or
“How long until an event of type k occurs?” We will discuss such prediction
tasks in more details in Section 2.1.5.

Alternatives to MLE. The NLL in (2.49), (2.50) or (2.51) are based on the
logarithmic scoring rule (LogScore), and have been largely adopted in the liter-
ature as the default objective for learning MTPP models (Shchur et al., 2021b).
However, Brehmer et al. (2021) showed that alternatives to the LogScore can
be used to derive a variety of consistent scoring rules for MTPP models. Let
Sf , Sp and SF be (strictly) consistent scoring rules for f∗(τ ;θ), p∗(k|τ ;θ)
and 1 − F ∗(T ;θ), respectively. Given a a set of training sequences Strain, the
scoring rule

L(θ;Strain) =− 1

L

L∑
l=1

[
nl∑
i=1

[
Sf
l,i(f

∗(τl,i;θ)) + Sp
l,i(p

∗(kl,i|τl,i;θ))
]

− SF
l (1− F ∗(T ;θ))

]
, (2.54)

is (strictly) consistent for the joint PDF f∗(τ, k;θ) restricted to the interval
[0, T ] (Brehmer et al., 2021). This expression implies that one can choose

1The local minima becomes a global minima in case of a convex problem.
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among a broader class of scoring rules than the LogScore to evaluate point
process forecasts. For instance, one can choose to use the Continuous Ranked
Probability Score (CRPS) (Gneiting et al., 2007) for Sf , or the Brier score
(Brier, 1950) for Sp. In this context, Ben Taieb (2022), proposed to use the
CRPS to learn the quantile function of inter-arrival times. In contrast to
the local property of the LogScore, both the CRPS and the Brier score are
sensitive to distance, in the sense that they reward predictive distributions that
assign probability mass close to the observed realization (Gebetsbergera et al.,
2018). Nonetheless, the choice between local and non-local proper scoring
rules has been generally subjective in the literature. Finally, note that using
the LogScore for all Sf

l,i, S
p
l,i and SF

l,i in (2.54) reduces to the NLL in (2.49).

Another popular class of learning procedures for MTPP models falls under the
category of Least-Square Estimation (LSE) (Wang et al., 2016; Eichler et al.,
2017; Xu et al., 2017). Based on the observation that

E[Nk(t)|Ht] =

∫ t

0
λ∗k(s)ds, (2.55)

least square objective functions essentially aim to minimize the squared error
between the observed counting process and the integral of the intensity function
, i.e.

L(θ,Strain) = − 1

L

L∑
l=1

nl∑
i=1

K∑
k=1

[
Nkl,i(tl,i)−

∫ tl,i

0
λ∗kl,i(s)ds

]2
, (2.56)

Finally, other forms of training procedures have been considered to learn the
parameters of the model, such as reinforcement learning (Upadhyay et al.,
2018; Li et al., 2018), adversarial training (Xiao et al., 2018; Zhu et al., 2020),
variational inference (Boyd et al., 2020; Chen et al., 2021a), noise contrasting
estimation (Guo et al., 2018b; Mei et al., 2020), or score-matching objectives
(Sahani et al., 2016; Li et al., 2023).

Remark 3. Instead of a single mark, assume that events can be associated to
multiple marks simultaneously. Such a scenario can naturally occur in various
applications, such as in the context of Electronic Health Records (EHR), where
a single consultation often leads to multiple diagnoses and treatments being
recorded simultaneously (Enguehard et al., 2020). In this multi-mark setting,
the NLL writes as a form of binary cross-entropy loss (Bhave & Perotte, 2021)
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that accounts for the multiple marks that events can take simultaneously, i.e.

L(θ,Strain) =− 1

L

L∑
l=1

[
nl∑
i=1

K∑
k=1

[
1l,i,klog f∗(τl,i, kl,i;θ)

+ (1− 1l,i,k)log (f∗(τl,i;θ)− f∗(τl,i, kl,i;θ))
]

− log(1− F ∗(T ;θ))

]
, (2.57)

where 1l,i,k(·) is a indicator function taking the value 1 if the event el,i is
associated to mark k, along possibly other concurrent marks in K. However,
in this dissertation, we will exclusively focus on the single-mark setting, in
which events can exclusively take one mark at any time. This implies that
the NLL objective for a dataset of L sequences will be systematically given by
(2.49) or (2.51).

2.1.4 Sampling from a MTPP

Sampling from a MTPP can be useful for a wide range of practical applications.
For instance, by simulating multiple events from a model, we can observe how
the process typically evolves, enabling us to assess some of its core charac-
teristics, e.g. does the process exhibit a clustered or a regular point pattern?
In other scenarios, we may instead seek to predict the future evolution of a
process by simulating possible trajectories from partially-observed sequences.

Once a MTPP model has been fitted to the observed data, two main approaches
are commonly used in practice to generate new event sequences within a prede-
fined interval [0, T ], namely the inverse transform method and Ogata’s modified
thinning algorithm (Ogata, 1981). Both of these methods are presented below.

Inverse transform method via CDF. Before presenting how an en-
tire sequence can be generated using the inverse transform method, it
is essential to understand how a single event can be sampled from the
inverse CDF conditional on past observations. Suppose that we ob-
serve the events {(t1, k1), ..., (ti−1, ki−1)}, and that we wished to sam-
ple the next event (ti, ki). Given the predictive CDF of arrival times
F ∗(t; θ̂) = F (t|(t1, k1), ..., (ti−1, ki−1); θ̂), and the predictive PMF of marks
p∗(k|t; θ̂) = p(k|t, (t1, k1), ..., (ti−1, ki−1); θ̂), sampling the next event can
be achieved in two consecutive steps (Ross, 2012). First, we sample
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Figure 2.9: Illustration of the inverse transform method via CDF for an un-
marked scenario (i.e. υ1,i = υi). As t4 falls outside the observation window T ,
its is not included in the sequence S.

υ1,i ∼ Uniform[0, 1] and compute

ti = (F ∗)−1(υ1,i; θ̂), (2.58)

where (F ∗)−1 denote the inverse CDF transform of F ∗. Then, to sample ki
conditional on ti, we first sample υ2,i ∼ Uniform[0, 1] and solve

ki = argmin
πk

K∑
k=1

p∗(k|ti; θ̂)πk
< υ2,i, (2.59)

where πk is a permutation of the indices k ∈ K that sorts the entries
of p∗(θ̂) =

[
p(k = 1|ti; θ̂), ..., p(k = K|ti; θ̂)

]⊺
∈ RK

+ from less to most likely.
Consequently, to generate a whole new sequence, we can start from t = 0 and
sample new events one by one from F ∗(τ ; θ̂) and p∗(k|τ ; θ̂), conditioning on
the sampled events as we go in an auto-regressive fashion, until we reach the
end of the observation window T . This procedure is outlined in Algorithm 1,
and illustrated on Figure 2.9. However, the inverse transform via CDF method
requires us to evaluate (F ∗)−1(υ1,i; θ̂), which is not always available in closed-
form for some models like the Hawkes process. Fortunately, in such cases, we
can rely on efficient numerical root-finding algorithms to compute the inverse
(F ∗)−1.
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Algorithm 1 Inverse Transform Sampling via CDF

Input: Predictive CDF of arrival times F ∗(t; θ̂), predictive PMF of marks

p∗(k|t; θ̂), end of observation window T .

Set t = 0, i = 1.

while t ≤ T do

1. Sample υ1,i, υ2,i ∼ Uniform[0, 1]

2. Compute the next arrival time ti = (F ∗)−1(υ1,i; θ̂).

3. Compute the next mark ki = argmin
πk

∑K
k=1 p

∗(k|ti; θ̂)πk
< υ2,i.

4. Keep the event (ti, ki) if ti ≤ T , else reject it.

5. Set t = ti, i = i+ 1.

end while

Return: A realization S = {(t1, k1), ..., (tn, kn)} of a MTPP with intensity

λ∗k(t; θ̂).

Inverse transform method via compensator. Instead of using the predic-
tive CDF of inter-arrival times, an alternative implementation of the inverse
transform method relies on the ground compensator of the process defined as

Λ∗(t) =

∫ t

0
λ∗(s)ds, (2.60)

to generate new event sequences. This procedure takes its foundation on the
random time change theorem, which is formally stated below

Theorem 1 (Random Time Change Theorem (Brown et al., 2002)).
Let S = {(t1, k1), ..., (tn, kn)} be a realization of a MTPP on [0, T ] with
ground intensity λ∗(t) and ground compensator Λ∗(t). Then the sequence
SΛ = {Λ∗(t1), ...,Λ

∗(tn)} follows a univariate HPP with unit rate on the in-
terval [0,Λ∗(T )].

Essentially, the random time change theorem states that a sequence of arrival
times generated on [0, T ] from any arbitrary process with ground compensator
Λ∗(t) can be transformed into a realization of a unit rate HPP on [0,Λ∗(T )].
This in turn leads to Corollary 1.
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Algorithm 2 Inverse Transform Sampling via Random Time Change Theorem

Input: Predictive ground compensator Λ∗(t; θ̂), predictive PMF of marks

p∗(k|t; θ̂), end of observation window T .

Set t = 0, z = 0, i = 1.

while t ≤ T do

1. Sample υ1,i, υ2,i ∼ Uniform[0, 1]

2. Compute νi = −log (1− υ1,i)

3. Set the next HPP arrival time as zi = z + νi

4. Compute the next arrival time as ti = (Λ∗)−1(zi; θ̂)

5. Compute the next mark ki = argmin
πk

∑K
k=1 p

∗(k|ti; θ̂)πk
< υ2,i.

6. If ti ≤ T , keep the event (ti, ki), else reject it.

4. Set t = ti, i = i+ 1.

end while

Return: A realization S = {(t1, k1), ..., (tn, kn)} of a MTPP with intensity

λ∗k(t; θ̂).

Corollary 1 (Inverse Random Time Change Theorem (Rasmussen, 2018)).
Let SZ = {z1, ..., zn} be a realization of a univariate unit rate HPP on [0, TZ ],
and let Λ∗(t) be the ground compensator of an arbitrary MTPP. Assuming the
existence of the inverse transform (Λ∗)−1 of Λ∗, the sequence

S = {(Λ∗)−1(z1), ..., (Λ
∗)−1(zn)} (2.61)

is a valid realization of the ground MTPP with compensator Λ∗(t) on [0, T ]
where T = (Λ∗)−1(TZ).

This means that simulating a new sequence from any arbitrary MTPP model
with ground compensator Λ∗(t; θ̂) can be achieved in two consecutive steps.
First, we need to generate a sample zi from a unit rate HPP. Recall from Section
2.1.2 that the inter-arrival times of a unit rate HPP are i.i.d. random variables
following an exponential distribution with rate λ = 1. Consequently, to obtain
zi, we first sample υ1,i ∼ Uniform[0, 1] and compute zi = zi−1 + si, where
the inter-arrival time si is obtained from the inverse CDF of an exponential
distribution with rate λ = 1, i.e.

νi = −log (1− υ1,i). (2.62)
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Finally, to obtain the actual event (ti, ki) from the MTPP of interest, we
evaluate ti = (Λ∗)−1(zi; θ̂), and sample the mark ki from (2.59). Starting
from t = 0, we repeat this procedure until we reach the end of the observation
window T , conditioning Λ∗(t; θ̂) and p∗(k|t; θ̂) on the newly generated events
as we go. This sampling procedure is summarized in Algorithm (2).

Similarly to (F ∗)−1, the inverse of the ground compensator (Λ∗)−1 is not always
available in closed-form, requiring numerical root-finding techniques. We will
see below how this pitfall can be avoided when using thinning algorithms to
sample from MTPP models.

Ogata’s modified thinning algorithm. The core idea behind Ogata’s mod-
ified thinning algorithm (Ogata, 1981) lies in two main steps: (1) Simulate
events from a HPP with a greater intensity than the MTPP of interest, and
(2) thin out the excess events to account for oversampling. To this end, we
must first define an upper bound m(t) on the ground intensity of the process
λ∗(t; θ̂) that verifies

m(t) ≥ sup
s∈[t,T ]

λ∗(s; θ̂). (2.63)

For instance, if we want to simulate from a Hawkes process with exponen-
tial kernels in (2.42)-(2.43), we can leverage the fact the intensity decreases
exponentially between two events and define m(t) as

m(t) =
K∑
k=1

µk + K∑
k′=1

∑
(tj ,kj)∈Hk′

t

γk,k′exp
(
−βk,k′(t− tj)

) , (2.64)

To generate a candidate event (ti, ki), we first sample an inter-arrival time τi
from a HPP with rate m(t), and keep the candidate arrival-time ti = ti−1 + τi

with probability λ∗(ti;θ̂)
m(t) . This ensures that the non-thinned out arrival times

have been generated from a MTPP process with ground intensity λ∗(t; θ̂) (see
Theorem 4.2 of (Chen, 2018) for a detailed proof). If ti is accepted, we sample
the mark ki from (2.59), and repeat the procedure until we reach the end of the
observation window T . Ogata’s thinning method is summarized in Algorithm
3.

Although Ogata’s modified thinning algorithms doesn’t require the computa-
tion of the inverse CDF or compensator, its implementation still faces some
challenges, as discussed in Shchur (2022). For instance, evaluating the up-
per bound m(t) may be a daunting task for some parametrizations of MTPP
models, and the algorithm can suffer from high rejection rates, making it less
efficient than the inverse transform methods.
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Algorithm 3 Ogata’s Modified Thinning Algorithm

Input: Predictive ground intensity λ∗(t; θ̂), predictive PMF of marks

p∗(k|t; θ̂), bound m∗(t), end of observation window T .

Set t = 0, i = 1.

while t ≤ T do

2. Sample υ1,i, υ2,i, υ3,i ∼ Uniform[0, 1]

3. Compute the upper bound m(t).

4. Compute τi = − 1
m(t) log (1− υ1,i).

5. Set the next candidate arrival time as ti = t+ τi.

6. Compute the next mark ki = argmin
πk

∑K
k=1 p

∗(k|ti; θ̂)πk
< υ2,i.

7. If ti ≤ T and υ3,i <
λ∗(ti)
m(t) , keep the event (ti, ki) and set i = i+ 1, else

reject it.

8. Set t = ti.

end while

Return: A realization S = {(t1, k1), ..., (tn, kn)} of a MTPP with intensity

λ∗k(t; θ̂).

2.1.5 Prediction Tasks and Evaluation Metrics

Recall from Section 2.1.3 that the most common approach to learn a MTPP
model f∗(τ, k;θ) (or equivalently, λ∗k(t;θ), Λ

∗
k(t;θ) or F ∗(t, k;θ)) involves min-

imizing the NLL objective in (2.49). Rearranging the terms of this expression,
we obtain

L(θ;Strain) = − 1

L

L∑
l=1

[
nl∑
i=1

log f∗(τl,i;θ)− log(1− F ∗(T ;θ))

]
︸ ︷︷ ︸

LT (θ;Strain)

− 1

L

L∑
l=1

[
nl∑
i=1

log p∗(kl,i|τl,i;θ)

]
︸ ︷︷ ︸

LM (θ;Strain)

(2.65)

This reveals that learning a MTPP model from event sequences essentially
amounts to solving two main estimation tasks: estimating a predictive PDF
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of inter-arrival times f∗(τ ;θ) through LT (θ;Strain), and a predictive PMF of
marks p∗(k|τ ;θ) through LM (θ;Strain). Note that a similar decomposition in-
volving λ∗(t;θ), Λ∗(t;θ), and p∗(k|τ ;θ) can be derived from expression (2.51).
Once the model is trained, we can use the estimates f∗(τ ; θ̂) and p∗(k|τ ; θ̂) to
compute point predictions for new events, answering queries of the type:

• When is the next event likely to occur?

• What will be the type of the next event, given that it occurs at a certain
time t?

• How long until an event of type k occurs?

In the following, we will denote the task of estimating f∗(τ ;θ) and generat-
ing point estimates for the (inter-)arrival times of future events as the time
prediction task. Similarly, the mark prediction tasks will refer to the task of
estimating p∗(k|τ ;θ) and generating point estimates for the marks of future
events. These two tasks are briefly discussed below, along with some commonly
used metrics for evaluating model performance with respect to each of them.

Time prediction task. Given a set of new test sequences Stest generated
from the same underlying process as Strain, we can assess the goodness-of-fit of
f∗(τ ; θ̂) by reporting the NLL score LT (θ̂;Stest)

2 in (2.65). In a broad sense,
LT (θ̂;Stest) provides us with a measure of how likely the inter-arrival times in
Stest have been generated by the model f∗(τ ; θ̂). However, as LT (θ̂;Stest) is
unbounded and can be arbitrarily shifted by changing the scale of the data,
it is challenging to interpret (Shchur et al., 2020a, 2021b). Nonetheless, this
metric can be used as basis for comparison between two models, with the one
showing the lowest LT (θ̂;Stest) score presenting itself as the best fit to the
observed arrival times.

Conversely, in applications where point predictions are of interest, an estimate
of the next inter-arrival time τ̃i can be obtained by deriving diverse summary
statistics from f∗(τ ; θ̂). For instance, assuming that (ti−1, ki−1) is the last
observed event, one can choose τ̃i as the mean computed from f∗(τ ; θ̂), i.e.

τ̃i = Eτ∼f∗(τ ;θ)[τ ] =

∫ ∞

0
τf∗(τ ; θ̂)dτ, (2.66)

where the expectation can be estimated via simulation using the inverse trans-
form method of Section 2.1.4, or via Monte-Carlo integration (Kalos & Whit-

2Note that this term is computed on the new test sequences Stest rather than on the
training sequences Strain



38 Background on MTPPs and Uncertainty Quantification

lock, 2008). Alternatively, τ̃i can be chosen as the median computed from
f∗(τ ; θ̂), i.e.

τ̃i = (F ∗)−1(0.5; θ̂), (2.67)

where (F ∗)−1 can also be evaluated using the inverse transform method. Fi-
nally, we can assess the quality of the estimates τ̃i by quantifying their average
deviation from the true observations in Stest, e.g. by using the Mean Absolute
Error (MAE) or Mean Squared Error (MSE) in event time prediction:

MAE =
1

|Stest|

|Stest|∑
l=1

nl∑
i=1

|τ̃l,i − τl,i|
nl

, (2.68)

MSE =
1

|Stest|

|Stest|∑
l=1

nl∑
i=1

(τ̃l,i − τl,i)
2

nl
. (2.69)

Note that the MAE is a consistent scoring function for a forecast of the median
in (2.67), while the MSE is a consistent scoring function for a forecast of the
mean in (2.66) (Gneiting, 2012).

Mark prediction task. Similarly to the time prediction task, the goodness-
of-fit of p∗(k|τ ; θ̂) can be evaluated by computing LM (θ̂;Stest) on new test
sequences Stest. However, LM (θ̂;Stest) inherits the same interpretation chal-
lenge as its time counterpart. Fortunately, if we assume again that (ti−1, ki−1)
is the last observed event in a given sequence, we can generate a point predic-
tion k̃i for the next mark as

k̃i = argmax
k∈K

p∗(k|t̃i; θ̂) = argmax
k∈K

λ∗k(t̃i; θ̂)

λ∗(t̃i; θ̂)
= argmax

k∈K
λ∗k(t̃i; θ̂), (2.70)

and evaluate the quality of the estimate by means of various classification
evaluation metrics. For instance, one could report the Accuracy (ACC) in
event mark prediction:

ACC =

|Stest|∑
l=1

nl∑
i=1

1

(
k̃i,l = ki,l

)
nl × |Stest|

, (2.71)

where 1(·) is the indicator function, and ki,l is the ground-truth mark. Other
choices of classification metrics include the average F1-score (Manning et al.,
2008):

F1-score =
1

K

K∑
k′=1

2× Pk′ × Rk′

Pk′ + Rk′
, (2.72)
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where, noting S = |Stest|,

Pk′ =
1

S

S∑
l=1

1

nl

nl∑
i=1

1

(
k̃i,l = k′, ki,l = k′

)
[
1

(
k̃i,l = k′, ki,l = k′

)
+ 1

(
k̃i,l = k′, ki,l ̸= k′

)] , (2.73)

Rk′ =
1

S

S∑
l=1

1

nl

nl∑
i=1

1

(
k̃i,l = k′, ki,l = k′

)
[
1

(
k̃i,l = k′, ki,l = k′

)
+ 1

(
k̃i,l ̸= k′, ki,l = k′

)] . (2.74)

We can also compute the Mean Reciprocal Rank (MRR) (Craswell, 2009):

MRR =
1

S

S∑
l=1

1

nl

nl∑
i=1

1

Rank(kl,i)
, (2.75)

where Rank(kl,i) refers to the rank position of kl,i among the entries of
p∗(θ̂) =

[
p(k = 1|ti; θ̂), ..., p(k = K|ti; θ̂)

]⊺
∈ RK

+ sorted from highest to low-
est probability, i.e. Rank(kl,i) = 1 if kl,i corresponds to the highest entry of
p∗(θ̂), Rank(kl,i) = 2 if kl,i corresponds to its second highest entry, and so
on. In practice, a model demonstrating higher accuracy, F1-score, and MRR
in mark prediction is desired.

Remark 4. Despite offering clearer interpretation into model performance,
point prediction metrics, such as MAE, accuracy or F1-score, are deemed
less appropriate to evaluate MTPP models than their NLL counterparts
LT (θ̂;Stest) and LM (θ̂;Stest) (Shchur et al., 2021b). The rationale behind
this criticism is grounded on the fact that point prediction metrics only take a
single prediction into account, whereas NLL metrics enable the evaluation of
the entire predictive distributions f∗(τ ; θ̂) and p∗(k|τ ; θ̂). In Section 2.2.1, we
discuss alternative metrics inspired from the forecasting literature that allow
us to assess the quality of the predictive distributions while providing clearer
interpretation than the NLL.

2.1.6 Link to Survival Analysis

Temporal Point Processes bear close relations to the field of Survival Analysis
(SAN) (Kalbfleisch & Prentice, 2002), where the goal is to estimate the time
to occurrence of an event of interest, such as death or recovery of a patient,
component failure, or membership cancellation. The time to event t⋆, called
survival time, is typically modeled using a survival function S(t), that specifies
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the probability that the event did not occur until time t, i.e.

S(t) = 1− F (t) = P (t⋆ > t) , (2.76)

where F (t) is the CDF of survival times. These survival times can also be
characterized using the hazard function, which gives the instantaneous risk of
the event occurring at time t, i.e.

λ(t) =
f(t)

S(t)
= lim

∆t→0

P (t ≤ t⋆ ≤ t+∆t|t⋆ > t)

∆t
, (2.77)

with f(t) the PDF of survival times. Looking at the similarity between the
hazard function in (2.77) and the conditional intensity function in (2.8), we
can easily draw a parallel between SAN and TPP. However, while SAN and
TPP are both used to model events that occur over time, there exists some
key differences between the two fields. First, SAN usually focuses on a single
event occurrence for the system under study (e.g. the death of a patient),
whereas TPP involve modeling multiple events that materialize over time.
Consequently, as only the first time to event is usually of interest, SAN mod-
els do not leverage past observations for future inference. In contrast, TPP
usually account for the entire sequence of past observations, and appropriately
capturing the complex inter-dependencies between event occurrences is often
crucial to enable accurate predictions. Instead, SAN typically relies on ex-
ternal explanatory variables to characterize the survival or hazards functions,
such as in the Cox proportional hazards regression model (Cox, 1972). While
explanatory variables can also be included in a TPP model, the history of the
process is usually considered as the main covariate. Finally, a central concept
in SAN is censoring, which describes cases where the main event has not been
observed within the specified observation window. Censoring is well-studied
in SAN, and many approaches have been developed to accommodate missing
observations during training and inference. Despite the availability of several
methods designed to handle censored observations within event sequences (Mei
et al., 2019; Shchur et al., 2020a; Gupta et al., 2021; Boyd et al., 2023), the
problem generally received less attention in the context of MTPP modeling.
For further resources on survival analysis, see for instance Clark et al. (2003);
Klein et al. (2020); Wiegrebe et al. (2024).
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2.2. Uncertainty Quantification

In this section, we slightly deviate from our context of MTPP modeling to in-
troduce some key concepts of uncertainty quantification (UQ) that lay at the
center of core contributions in this thesis. In the context of predictive mod-
eling, UQ can be broadly defined as the process of identifying, modeling, and
measuring the uncertainty in the predictions made by a model (Abdar et al.,
2021). Essentially, uncertainty estimates must reflect the degree of confidence
of a model with respect to its own predictions, allowing for appropriate cau-
tion when the predicted outcome is highly uncertain. This ability is crucial
for safe decision-making in critical applications such as medical diagnosis or
autonomous driving, where incorrect predictions can lead to disastrous conse-
quences.

Conventionally, the taxonomy of uncertainties divides them into two main
types based on the originating sources: aleatoric and epistemic uncertainty
(Hüllermeier & Waegeman, 2021). Aleatoric uncertainty, also called data un-
certainty, usually refers to the natural randomness and noise present in the
observations. This property is inherent to the underlying data generating pro-
cess itself, making it an irreducible source of uncertainty. On the other hand,
epistemic uncertainty, or model uncertainty, refers to the incomplete knowl-
edge of the fitted model, either stemming from incorrect modeling assumptions
or inadequate training. Contrary to aleatoric uncertainty, epistemic uncer-
tainty can be reduced by defining a more appropriate hypothesis set for the
model, or by gathering more data. Nonetheless, sources of uncertainty are of-
ten misunderstood, and clearly distinguishing between aleatoric and epistemic
uncertainty is not always feasible in practice (Gruber et al., 2023).

There has been growing interest in providing direct estimates of these sources
of uncertainty in machine learning algorithms, leading to the development
of numerous approaches and applications (Abdar et al., 2021; Gawlikowski
et al., 2023). Among others, common examples include Bayesian inference
(Blundell et al., 2015; Gal & Ghahramani, 2016) or deep ensemble methods
(Lakshminarayanan et al., 2017; Wen et al., 2020).

In practice however, we also want these uncertainty estimates to be reliable,
in the sense that they must faithfully reflect on the true uncertainty in the
predictions. While we already introduced proper scoring rules for the eval-
uation of probabilistic forecasts in Sections 2.1.3 and 2.1.5, we continue our
discussion by introducing two related topics. The first, probabilistic calibration,
is a property referring to the statistical consistency between the observations
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and the predictive distributions returned by the model. The second, conformal
prediction, is a statistically sound framework that enables the construction of
distribution-free prediction regions from any arbitrary base model with finite-
sample coverage guarantees.

2.2.1 Calibration

Calibration, in the context of forecasting theory, refers to the statistical consis-
tency between the predicted distribution and the observed outcomes (Gneiting
et al., 2007). It is a property expressed by any ideal model, and thus, any com-
petent forecaster should strive to attain it. In the following, we will present
how calibration is defined in the general context of regression and classification
problems, while its application to our MTPP setting will be introduced later
in Chapter 3.

Calibration in regression. Consider the case of a univariate regression
problem involving a target variable Y ∈ R depending on an input variable
X ∈ R. Suppose that we have access to a dataset of n i.i.d. observations
D = {(Xi, Yi)}ni=1 drawn from some joint distribution PXY . To D, we fit
a probabilistic predictor Fθ̂ : R → F parametrized by θ̂ ∈ Θ that maps a
realization x of X to a predictive CDF F (·|x; θ̂) ∈ [0, 1] in the space F of
distributions over R.

The model Fθ̂ is said to be (unconditionally) probabilistically calibrated (or
Probability Integral Transform (PIT) calibrated) if (Dawid, 1984; Kuleshov
et al., 2018)

P
(
F (Y |X; θ̂) ≤ p

)
= p, ∀p ∈ [0, 1], (2.78)

where the probability is taken over X and Y . Intuitively, this definition implies
that, if the predictive CDF F (y|x; θ̂) is well-calibrated, then for p = 0.9, 90%
of all prediction intervals would contain, on average, the true observation 90%
of the time.

An interesting observation is that the left hand side of expression (2.78) cor-
responds to the CDF of F (Y |X; θ̂), while the right hand side relates to the
CDF of a uniform random variable U ∈ [0, 1] independent of F (Y |X; θ̂). Con-
sequently, evaluating the probabilistic calibration of a forecaster Fθ̂ can be
achieved by measuring the discrepancy between the two distributions using,
e.g. the 1-Wasserstein distance (Zhao et al., 2020; Zhou et al., 2021a) or the
Cramér-von Mises distance (Kuleshov et al., 2018; Utpala & Rai, 2021). Let
FZ and FU denote the CDFs of the random variables Z = F (Y |X; θ̂) and U ,
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respectively. The 1-Wasserstein distance between FZ(p; θ̂) and FU (p) is given
by (Dheur & Ben Taieb, 2023)

d(FZ , FU ) =

∫ 1

0

∣∣∣FZ(p; θ̂)− FU (p)
∣∣∣ dp. (2.79)

In practice, given a set of n observations D = {(Xi, Yi)}ni=1, this distance
is approximated using Monte Carlo by discretizing the interval [0,1] in M
equidistant values p1, ..., pM . By evaluating the empirical CDF of PITs at each
pm, i.e.

F̄Z(pm;θ) =
1

n

n∑
i=1

1[F (Yi|Xi) ≤ pm], (2.80)

and given that FU (pm) = pm, an approximation of the distance in (2.79) is
given by the Probabilistic Calibration Error (PCE) (Zhao et al., 2020; Zhou
et al., 2021b; Dheur & Ben Taieb, 2023), defined as

PCE =
1

M

M∑
m=1

∣∣∣F̄Z(pm; θ̂)− pm

∣∣∣ . (2.81)

Essentially, the higher the PCE, the further the distribution of PITs under
the model deviates from a uniform distribution, indicating that the model
F (y|x; θ̂) exhibits poor probabilistic calibration. This deviation from a uni-
form distribution can be further assessed from a variety of statistical tests,
such as the Kolmogorov-Smirnov test (Massey, 1951), the Cramér-von Mises
test (Cramér, 1928; Mises, 1928), or the Anderson-Darling test (Anderson &
Darling, 1952).

Calibration in classification. Consider a univariate classification problem
where the target variable Y ∈ K = {0, ...,K} belongs to a discrete space K of
K labels. Assuming again that we have access to a dataset of n observations
D = {(Xi, Yi)}ni=1 drawn i.i.d. from some distribution PXY , we fit a forecaster
pθ̂ : X → Y : R → F with parameters θ̂ ∈ Θ that maps a realization x of X to
a predictive PMF p(·|x; θ̂) ∈ [0, 1] in the space F of discrete distributions over
K. In this case, the forecaster pθ̂ is said to be top-label calibrated (Guo et al.,
2017; Gawlikowski et al., 2023) if

P

(
Y = argmax

y∈K
p(y|X; θ̂) | max

y∈K
p(y|X; θ̂) = p

)
= p ∀p ∈ [0, 1], (2.82)

where the probability is taken over X and Y . Intuitively, if a predictive PMF
p(y|x; θ̂) is top-label calibrated, it implies that all predictions made with a
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confidence level of 0.9 should correctly match the observed label Y 90% of the
time.

Denoting ỹ = argmax
y∈K

p(y|X; θ̂) and p̃ = max
y∈K

p(y|X; θ̂) as the top-label pre-

diction and corresponding confidence at X, respectively, quantifying top-label
calibration is achieved by taking the expected absolute difference between the
left and right hand sides of (2.82), i.e.:

Ep̃ [|P (Y = ỹ | p̃ = p)− p|] , (2.83)

which is approximated by binning the predictions of the model, as detailed
next. Let {ỹi}ni=1 be the predictions made by the model with confidence {p̃i}ni=1

on a dataset D = {(Xi, Yi)}ni=1. To approximate (2.83), the most common ap-
proach consists in partitioning the interval [0,1] in M equal-size bins b1, ..., bM .
Each prediction ỹi is then assigned to a bin bm if its associated confidence p̃i
lies in the interval [m−1

M , m
M ]. Then, we evaluate the average confidence and

accuracy of predictions within a given bin bm as

acc(bm) =
1

|bm|
∑
ỹi∈bm

1 (Yi = ỹi) and conf(bm) =
1

|bm|
∑
ỹi∈bm

p̃i, (2.84)

where |bm| denotes the number of predictions in bm. Finally, an approximation
of (2.83), called the Expected Calibration Error (ECE) (Naeini et al., 2015) is
obtained as

ECE =
1

M

M∑
m=1

|acc(bm)− conf(bm)| . (2.85)

The ECE is frequently used in the literature as the default metric to assess
the top-label calibration of classifiers (Laves et al., 2019; Mehrtash et al., 2020;
Thulasidasan et al., 2019; Wenger et al., 2020), and this measure can be used to
construct various statistical tests (Vaicenavicius et al., 2019; Widmann et al.,
2019; Mortier et al., 2023). Similarly to the PCE metric, a high ECE is in-
dicative that the model p(y|x; θ̂) exhibits poor top-label calibration.

Reliability diagrams. A disadvantage with PCE and ECE metrics is that
information regarding the calibration error at individual probability levels
p1, ..., pM , or within individual bins b1, ..., bM , is lost. Reliability diagrams
(Niculescu-Mizil & Caruana, 2005; Pinson & Hagedorn, 2011; Guo et al., 2017;
Kuleshov et al., 2018) are visual tools that can be used to assess (probabilistic
or top-level) calibration at a fine-grained level for both continuous and discrete
predictive distributions.



45

For F (y|x; θ̂), a reliability diagram is obtained by plotting the empirical CDF
of PITs F̄Z(pm; θ̂) in (2.80) against all probability levels pm. Alternatively, a re-
liability diagram is obtained for p(y|x, θ̂) by plotting acc(bm) against conf(bm)
in (2.84) for all bm. In both cases, a well calibrated forecaster should align with
the diagonal line, and any deviation corresponds to miscalibration. Figure 2.10
shows an illustration of reliability diagrams for a regression and a classification
setting. In both cases, the miscalibrated model deviates significantly from the
diagonal line.

Intuitively, in a regression setting, a model curve falling below the diagonal
means that a proportion smaller than p of observations fell below their cor-
responding quantile forecast at level p, i.e. P

(
Y ≤ F−1(p|X; θ̂)

)
< p, where

F−1(·|X;θ) is the inverse CDF transform at X. For instance, on the left panel
of Figure 2.10, 20% of observations fell below their corresponding 40% quantile
forecast. Conversely, a model curve falling above the diagonal indicates that a
too large proportion of observations were observed below the said quantile fore-
cast, i.e. P

(
Y ≤ F−1(p|X; θ̂)

)
> p. In both cases, the model demonstrates

miscalibration, in the sense that its predictive distributions are inconsistent
with the realized outcomes.

In the classification setting, an intuitive interpretation of the reliability dia-
grams for uncalibrated models can be similarly extracted. Specifically, the
right panel of Figure 2.10 shows that, for all predictions made by the uncali-
brated model with confidence in the bin [0.7, 0.8], the accuracy reaches only
0.6 instead of 0.75. For that specific confidence bin, the uncalibrated model
is therefore overconfident in its predictions. Alternatively, if the accuracy for
a given bin was to exceed the diagonal line, the uncalibrated model would
instead exhibit underconfidence for that confidence bin.

Remark 5. A calibrated model doesn’t necessarily guarantee that the gener-
ated predictions are useful. In a regression setting, consider a forecaster that
outputs the marginal CDF F (y) = P(Y ≤ y) for every x. As discussed in
Kuleshov et al. (2018), despite the model being probabilistically calibrated in
the sense of (2.78), its predictions do not depend on the input X, and hence,
they are not very informative. Similarly, in a classification setting, a model
that outputs the marginal PMF p(y) = P(Y = y) for every x is top-label cal-
ibrated according to (2.82), but not particularly useful. In practice, we also
want the forecaster to be sharp, meaning that the prediction intervals (or es-
timated PMFs) should be tight around the realized outcome for every input
x.
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Figure 2.10: Left: In a regression setting, a reliability diagram for F (y|x; θ̂) is
obtained by plotting the empirical CDF of PITs in (2.80) against all confidence
levels p ∈ [0, 1]. Right: In a classification setting, a reliability diagram for
p(y|x; θ̂) is obtained by plotting acc(bm) against conf(bm) in (2.84) for all bm.

2.2.2 Conformal Prediction

Conformal prediction (CP) (Vovk et al., 2005) is a framework designed to create
statistically rigorous uncertainty regions from the predictions of any arbitrary
predictive models. Specifically, CP works by transforming the output of the
model into prediction regions that offer strong finite-sample coverage guaran-
tees. More importantly, CP ensures that these prediction regions are valid
in a distribution-free sense, meaning that no assumptions are made regarding
the underlying data distribution. This property allows conformal prediction
to provide robust uncertainty estimates across a wide range of applications
and models. This section aims to introduce the reader to the basic concepts
of conformal prediction, and is mostly based on the works of Angelopoulos &
Bates (2023) and Tibshirani (2023).

Marginal coverage guarantee. Suppose that we have access to a dataset of
n training samples D = {(Xi, Yi)}ni=1 drawn i.i.d. from some joint distribution
PXY with X ∈ X and Y ∈ Y. Depending on whether we are working in a
regression or classification setting, the target space Y can either be continuous,
i.e. Y = R, or discrete, i.e. Y = K = {0, 1, ...,K}, with K the number
of classes. For clarity of exposition, we focus our discussion to a regression
setting. The concepts introduced in this section can be directly extended to a
classification problem, as we will see in Chapter 5.
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Similar to the previous section, suppose that we have access to a predictive
model F (y|x; θ̂) fitted to the observations in D. Given a new test input Xn+1,
we wish to construct a distribution-free prediction interval R(Xn+1; θ̂) ⊆ R for
the target Yn+1 where (Xn+1, Yn+1) is also assumed be drawn i.i.d. from PXY .
In particular, given a user-specified nominal miscoverage level α, we want this
prediction region to verify

P[Yn+1 ∈ R(Xn+1; θ̂)] ≥ 1− α, (2.86)

where the probability is taken over all {(Xi, Yi)}ni=1 ∪ (Xn+1, Yn+1), hence the
name marginal coverage given to this requirement. In other words, we want
that among all prediction regions generated for a new input Xn+1, at least a
fraction 1− α of them contains the true observation Yn+1.

Let Q(α|x; θ̂) = F−1(α |x; θ̂) denote the α-quantile of F (y|x; θ̂). A natural
first approach to construct R(Xn+1; θ̂) is to take the interval delimited by the
quantiles Q(α/2|Xn+1; θ̂) and Q(1−α/2|Xn+1; θ̂), i.e.

R(Xn+1; θ̂) =
[
Q(α/2|Xn+1; θ̂), Q(1−α/2|Xn+1; θ̂)

]
. (2.87)

However, this interval is only guaranteed to satisfy the requirement in (2.86)
if F (y|x; θ̂) corresponds to the true, unobserved data distribution F (y|x). Un-
fortunately, due to model misspecification or lack of training data, F (y|x; θ̂)
can be a poor estimate of F (y|x), meaning that the interval in (2.87) fails to
achieve marginal coverage. Fortunately, CP enables us to build prediction in-
tervals that achieve (2.86) in finite-sample, even when the model is unreliable.
In the following, we introduce split conformal prediction (Papadopoulos et al.,
2002), a framework of CP that is widely used in practice given its computa-
tional efficiency.

Split conformal prediction. This approach, which involves partitioning the
data, is relatively simple but effective in transforming a heuristic notion of
uncertainty—any trained predictive model—into a rigorous one (Angelopoulos
& Bates, 2023). Prior to elaborate further on this methodology, we need to
define a non-conformity score function s

(
x, y;F (y|x; θ̂)

)
: X × Y → R as a

measure of disagreement between an observation y and the predictive model
F (y|x; θ̂). To ease notations in the remainder of the discussion, we will drop
the dependency of s on F (y|x; θ̂), i.e. s(x, y) = s

(
x, y;F (y|x; θ̂)

)
. Returning

to our regression problem, an example of non-conformity score involves taking
the maximum difference between the target y and the nearest of the quantiles
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Q(α/2|x; θ̂) and Q(1−α/2|x; θ̂) (Romano et al., 2019), i.e.

s(x, y) = max{Q(α/2|x; θ̂)− y, y −Q(1−α/2|x; θ̂)}. (2.88)

The score in (2.88) has an intuitive interpretation: the further the observa-
tion falls outside of

[
Q(α/2|x; θ̂), Q(1−α/2|x; θ̂)

]
, the greater is s(x, y), and so

is the disagreement between y and the model. Conversely, the closer y is to
the central point of the interval, the smaller is s(x, y), and so is the agree-
ment between y and the model. In practice, alternative choices to (2.88) are
available (Kato et al., 2023), the only requirement being that the score must
be negatively-oriented (Angelopoulos & Bates, 2023), i.e. lower values must
encode lower agreement.

Consider the dataset D = {(Xi, Yi)}ni=1 of n i.i.d. observations and the predic-
tive model F (y|x;θ)3. The split conformal procedure to construct a prediction
interval for a new target Yn+1 at coverage level 1 − α can be summarized in
the following steps:

1. Split D into two non-overlapping sets, Dtrain and Dcal with
Dtrain ∪ Dcal = D.

2. Fit F (y|x;θ) to the observations in Dtrain, yielding a heuristic measure
of uncertainty F (y|x; θ̂).

3. Use F (y|x; θ̂) to define a non-conformity score function

s(x, y) = s
(
x, y;F (y|x; θ̂)

)
. (2.89)

4. Compute the calibration scores using the observations in Dcal, i.e.

{ si }|Dcal|
i=1 := { s (Xi, Yi) : (Xi, Yi) ∈ Dcal } (2.90)

5. Compute the adjusted 1−α empirical quantile of these calibration scores:

q̂ = Quantile
(
s1, ..., s|Dcal| ∪ {∞ } ; ⌈(|Dcal|+ 1)(1− α)⌉

|Dcal|

)
. (2.91)

6. For a new test input Xn+1, use q̂ to construct a prediction region for
Yn+1 with a 1− α coverage level as follows:

R(Xn+1; θ̂) = {y ∈ Y : s(Xn+1, y) ≤ q̂} . (2.92)
3Note that the notation θ for the parameters means that the model is not yet trained.
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We can show that prediction interval R(Xn+1; θ̂) obtained from the split con-
formal procedure satisfies the marginal coverage property in (2.86).

Proof. Let { si }|Dcal|
i=1 := { s (Xi, Yi) : (Xi, Yi) ∈ Dcal } and

sn+1 = s(Xn+1, Yn+1). By definition of R(Xn+1; θ̂), we have

Yn+1 ∈ R(Xn+1; θ̂) ⇐⇒ sn+1 ≤ q̂, (2.93)

which implies that

P(Yn+1 ∈ R(Xn+1; θ̂)) = P(sn+1 ≤ q̂). (2.94)

Let us denote s⌈(|Dcal|+1)(1−α)⌉ as the ⌈(|Dcal|+1)(1−α)⌉-smallest values among
{ si }|Dcal|

i=1 . As the scores { si }|Dcal|
i=1 and sn+1 are i.i.d. random variables, we

have

P(sn+1 ≤ q̂) = P(sn+1 ≤ s⌈(|Dcal|+1)(1−α)⌉) (2.95)

=
⌈(|Dcal|+ 1)(1− α)⌉

|Dcal|+ 1
(2.96)

This last equality essentially tells us that sn+1 is equally likely to fall in between
any score in { si }|Dcal|

i=1 . Combining (2.94) and (2.96), and as ⌈x⌉ ≥ x, we finally
obtain the desired marginal coverage property

P(Yn+1 ∈ R(Xn+1; θ̂)) =
⌈(|Dcal|+ 1)(1− α)⌉

|Dcal|+ 1
≥ 1− α. (2.97)

Moreover, if no ties between the scores occur with probability almost one, then
marginal coverage is also upper bounded (Theorem 2.2. of Lei et al. (2018)),
i.e.

1− α ≤ P(Yn+1 ∈ R(Xn+1; θ̂)) ≤ 1− α+
1

|Dcal|+ 1
. (2.98)

Returning to our regression problem, we can show that the split conformal
procedure combined with the non-conformity score in (2.88) finally leads to
the following prediction interval:

R(Xn+1; θ̂) = [Q(α/2|Xn+1; θ̂)− q̂, Q(1− α/2|Xn+1) + q̂; θ̂)], (2.99)

which also has an intuitive interpretation. Depending on the value of q̂, which
accounts for the models’ mistakes on the calibration data, R(Xn+1; θ̂) simply
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grows or shrink the prediction interval in (2.87) to achieve the desired coverage.
This is illustrated on Figure 2.11.

Finally, despite split conformal prediction guaranteeing that marginal coverage
is always satisfied, we also seek informative prediction intervals, meaning they
should be as tight as possible. This will depend mainly on two key factors: the
accuracy of the base model F (y|x; θ̂), and the quality of the chosen score func-
tion. Nonetheless, interval size is not the only factor that we should consider
when evaluating a conformal approach, as we will discuss later.

Figure 2.11: Illustration of the prediction interval returned by 2.99. As in this
case q̂ > 0, the split conformal procedure grows the original prediction interval
in 2.87.

Remark 6. Although we focused our discussion on a regression problem in-
volving a model that outputs a predictive CDF F (y|x; θ̂), the split conformal
prediction remains valid for any heuristic notions of uncertainty, such as PDFs,
quantile functions, or point estimates. In particular, the procedure does not
change either in a classification setting, and only the non-conformity score
function must be adapted to the problem considered. We will discuss other
conformal approaches in both regression and classification settings later in
Chapter 5.
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Remark 7. So far, we assumed that the pairs {(Xi, Yi)}ni=1 and (Xn+1, Yn+1)
were drawn i.i.d. from the unknown distribution PXY . In practice, the
split conformal procedure only requires that these observations are ex-
changeable, which is weaker than the i.i.d. assumption. Formally, we say
that {(Xi, Yi)}ni=1 ∪ (Xn+1, Yn+1) are exchangeable if, for any permutation
π1, ..., πn+1 of the indices 1, ..., n + 1, their joint distribution P remains un-
changed (Tibshirani, 2023), i.e.

PX1,...,Xn+1(X1, ..., Xn+1) = PXπ1 ,...,Xπn+1
(X1, ..., Xn+1). (2.100)

Conditional coverage and adaptivity. Recall that the coverage guarantee
in (2.86) is a marginal property taken over all {(Xi, Yi)}ni=1 ∪ (Xn+1, Yn+1)}.
Although marginal coverage is a desirable property, we might also seek to derive
a prediction region that achieves a stronger notion of conditional coverage, i.e.

P[Yn+1 ∈ R(Xn+1; θ̂)|Xn+1 = x] ≥ 1− α ∀x ∈ X . (2.101)

Unfortunately, such conditional coverage guarantee is not achievable with-
out relying on strong distributional assumptions (Vovk, 2012; Foygel Barber
et al., 2021). Nonetheless, we may still enforce the generated prediction re-
gion R(Xn+1; θ̂) to satisfy an approximate notion of conditional coverage. To
achieve this in practice, we want the conformal approach to be adaptive to the
input x. In particular, we want the prediction region to be tight when the
confidence of the model at x is high, and large when its confidence is low. For
instance, the prediction interval defined in (2.92) adapts to different values of
x, shrinking or growing based on the uncertainty of the base model. In Chap-
ter 5, we will discuss several metrics to evaluate the adaptivity of different
conformal approaches in terms of their ability to approximate (2.101).
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On the Predictive Accuracy of Neural
MTPP Models
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The classical parametrizations of MTPP models introduced in Section 2.1.2
have found successful applications in modeling event sequences across diverse
sets of real-world applications. These include seismology (Ogata, 1988; Rotondi
& Varini, 2019), crime analysis (Egesdal et al., 2010; Mohler et al., 2011),
epidemiology (Choi et al., 2015; Rizoiu et al., 2018), finance (Bacry & Muzy,
2014; Bacry et al., 2015; Hawkes, 2018), or even social interactions (Guo et al.,
2015; Zhao et al., 2015; Lukasik et al., 2016). Nonetheless, these classical
models usually rely on strong modeling assumptions, which inherently limit
their flexibility in capturing the complex dynamics of real-world point patterns
(Mei & Eisner, 2017). To illustrate this statement, recall the Hawkes process
with exponential kernels, whose marked intensity functions are given by

λ∗k(t) = λk +

K∑
k′=1

∑
(tj ,kj)∈Hk′

t

γk,k′exp
(
−βk,k′(t− tj)

)
, (3.1)

where λk ∈ R+, γk,k′ ∈ R+, βk,k′ ∈ R+ and
Hk′

t = {(tj , kj) ∈ S | tj < t, kj = k′}. In (3.1), the influence of past events on
future ones is by design

1. Positive: λ∗k(t) is raised by a factor γk,k′ every time a new event of mark
k′ appears.

2. Additive: Each event contributes independently and additively to λ∗k(t)
through the sum in (3.1).

3. Exponentially decaying with time: After the initial excitation jump, the
influence of a past observation on λ∗k(t) fades away exponentially with
decay parameter βk,k′ .

However, it is not a difficult task to imagine scenarios where (1), (2), and
(3) are no longer valid. Indeed, in situations where events have an inhibit-
ing rather than exciting influence on each other, assumption (1) is no longer
satisfied. For instance, buying a new car usually inhibits the likelihood of pur-
chasing a next one in the foreseeable future. Secondly, assumption (2) can be
violated in situations where an event of mark k′ at time t1 triggers an exci-
tation γ1k,k′ , different than the excitation γ2k,k′ of another event of mark k′ at
time t2 > t1. For instance, we may play a newly discovered song on repeat at
first, but the initial excitation is likely to fade after the 100th hearing, meaning
that γ2k,k′ < γ1k,k′ . Finally, assumption (3) does not hold for processes where
the intensity is expected to increase over time. This can be exemplified by
the modeling of large magnitude earthquakes, where stress build-up over time
increases the likelihood of future occurrences (Ogata & Vere-Jones, 1984).
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To address these limitations, several studies focused on proposing modifica-
tions of the Hawkes process to capture additional effects that the original
formulation in (3.1) would miss by design. In this line of work, Zhou et al.
(2013) replaces the exponential kernel with a flexible non-parametric triggering
kernel estimated directly from data, while Lee et al. (2016) defines the excita-
tion parameters γk′,k as stochastic, rather than constant over time. To capture
non-linear effects of past events, Wang et al. (2016) proposed to process the in-
tensity of the Hawkes process function via a non-parametric isotonic function.
Subsequent developments then enabled to encompass complementary effects,
such as joint excitation and inhibition (Chen et al., 2019; Costa et al., 2020;
Duval et al., 2022).

While a common thread of these works focused on enhancing the flexibility
of MTPP models, others pursued a different direction, leveraging recent ad-
vances in deep learning techniques to capture complex event dynamics. The
resulting framework, named neural MTPP models (Shchur et al., 2021b), has
experienced rapid development since its introduction by the seminal work of
Du et al. (2016), with the emergence of numerous novel architectures and ap-
plications.

Given a sequence of events, neural MTPP models typically involve a combi-
nation of three main architectural components: 1) an event encoder, creating
a fixed-sized embedding for each event in the sequence, 2) a history encoder,
generating a representation of the history from the embeddings of past events,
and 3) a decoder parametrizing a function that fully characterizes a predictive
distribution over future arrival times and marks. Among other possibilities,
improvements with respect to existing baselines are obtained by proposing
alternatives to either of these components. For instance, one can replace a
RNN-based history encoder with a self-attentive one, or choose to parametrize
a certain MTPP function that leads to useful properties, such as reduced com-
putational costs or closed-form sampling. However, as pointed out by Shchur
et al. (2021b), “new architectures often change all these components at once,
which makes it hard to pinpoint the source of empirical gains”. Moreover, the
baselines against which a newly proposed architecture is compared, as well as
the datasets employed and the experimental setups, often differ from paper to
paper, which renders a fair comparison even harder.

In practice, the average sequence NLL is a commonly used metric to evaluate
the predictive performance of neural MTPP models. However, reporting a sin-
gle NLL value encompasses the contributions of both predictive distributions
of arrival times and marks, effectively obscuring model performance in fitting
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each predictive distribution separately. Moreover, while the NLL is useful for
comparing different baselines, it is difficult to interpret. In the context of fore-
casting theory, probabilistic calibration is a desired property that refers to the
statistical consistency between the predictive distributions extracted from the
model and the actual outcomes (Gneiting et al., 2007; Dheur & Ben Taieb,
2023). However, while probabilistic calibration is a property that any com-
petent or ideal predictive distribution should possess (Gneiting et al., 2007;
Dheur & Ben Taieb, 2023), assessing the calibration of neural MTPP models
has been generally overlooked by the community, both for the time and mark
predictive distributions.

In this chapter, our objective is to address the aforementioned concerns by
presenting the following contributions:

• We perform a large-scale experimental study to assess the predictive ac-
curacy of state-of-the-art neural MTPP models on 15 real-world event
sequence datasets in a carefully designed unified setup. Our study also
includes classical parametric MTPP models as well as synthetic datasets.
In particular, we study the influence of each major architectural compo-
nent (event encoding, history encoder, and decoder) for both the time
and mark prediction tasks.

• We assess the probabilistic calibration of neural MTPP models, both for
the time and mark predictive distributions. To this end, we employ stan-
dard metrics and tools borrowed from the forecasting literature, namely
the probabilistic calibration error and reliability diagrams. While the
distribution of arrival times is generally well-calibrated, our research re-
veals that classical parametric baselines exhibit better calibration of mark
predictive distributions compared to neural MTPP models.

• Among other findings, we found that neural MTPP models often do
not fully leverage the complete information contained in all historical
events. In fact, relying solely on a subset of the most recent observed
occurrences can yield comparable performance to encoding the entire
historical context. Furthermore, we demonstrate the high sensitivity of
various decoder parametrizations to the event encoder, highlighting the
significant gains in predictive accuracy that can be achieved through
appropriate selection. In addition, Lastly, our study shows that several
commonly used event sequence datasets within the TPP literature may
not be suitable for accurately benchmarking neural MTPP baselines.
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In this chapter, we begin our discussion with a comprehensive overview of
the general encoder-decoder framework upon which neural MTPP models are
commonly built, along with a detailed description of its major architectural
components. Then, in Section 3.3, we continue with a large scale experimen-
tal study of these neural MTPP models in a unified setup, highlighting their
strengths and weaknesses across a broad of datasets and evaluation metrics.

3.1. Neural MTPP Models

Recall that a realization of a MTPP is an ordered sequence of n events
S = {ei = (ti, ki)}ni=1 observed in [0, T ], where ti ∈ R+ is the ith event’s arrival
time, and ki ∈ K is its categorical mark. Equivalently, S = {ei = (τi, ki)}ni=1,
where τi = ti − ti−1 is the ith event’s inter-arrival time.

Moreover, recall that defining a MTPP model involves specifying either of
the functions f∗(t, k;θ), λ∗k(t;θ), Λ∗

k(t;θ) or F ∗(t, k;θ) with parameters θ,
provided that the chosen parametrization defines a valid joint distribution of
arrival times and marks. Essentially, a neural MTPP model carries this task
by leveraging the flexibility of neural network architectures. A neural MTPP
model often involves three principal components (Shchur et al., 2021b):

1. An event encoder u(·) : R+×K → Rdl which, for each ei ∈ S, generates
a fixed size embedding li ∈ Rdl .

2. A history encoder ENC(·) : P
(
Rdl
)
→ Rdh , which for each ei ∈ S,

generates a fixed size history embedding hi ∈ Rdh from past event rep-
resentations {l1, ..., li−1}. Here, P(Rdl) represents the power set of Rdl .

3. A decoder, which given hi and a query time ti−1 < t ≤ ti, parametrizes
a function that uniquely characterizes the MTPP, e.g. λ∗k(t;θ).

Figure 3.1 illustrates the general modeling pipeline of neural MTPP models.
In the next section, we discuss each of the principal components in more detail.

3.1.1 Event Encoding

The task of event encoding consists in generating a representation li ∈ Rdl for
each event in S, which will be passed to the history encoder, and eventually
to the decoder, at a later stage. This task essentially boils down to finding
an embedding lti ∈ Rdt for the (inter-)arrival time ti (τi), and an embedding
lki ∈ Rdk for the associated mark ki. The event embedding li ∈ Rdl with



58 On the Predictive Accuracy of Neural MTPP Models

dl = dt+dk is finally obtained through some combination of lti and lki , e.g. via
concatenation:

li = u(ei) =

[
lti
lki

]
. (3.2)

Encoding the (inter-)arrival times. A straightforward approach to obtain
lti is to select the raw inter-arrival times as time embeddings lti = τi or their log-
arithms lti = log τi (Omi et al., 2019; Shchur et al., 2020a; Mei & Eisner, 2017;
Du et al., 2016). Inspired by the positional encoding of Transformer archi-
tectures (Vaswani et al., 2017) and their extension to temporal data (Kazemi
et al., 2019), other works exploit more expressive representations by encoding
the arrival times as vectors of sinusoidal functions (Enguehard et al., 2020):

lti =

dt/2−1⊕
j=0

sin (βjti)⊕ cos (βjti), (3.3)

where βj ∝ 1000
−2j
dt and ⊕ is the concatenation operator. Variants of sinusoidal

encoding can also be found in Zhang et al. (2020); Zuo et al. (2020); Mei
et al. (2020); Yuan et al. (2023). Alternatively, learnable embeddings can be
obtained by feeding the inter-arrival times to a Multi-Layer Perceptron (MLP)
architecture (Goodfellow et al., 2016):

lti = σR (w2σR (w1τi + b1)
⊺ + b2) , (3.4)

where σR(x) = max(0, x) is the ReLU activation function (Fukushima, 1969)
and w1,w2, b1, b2 ∈ Rdl .

Encoding the mark: When marks are available, the most common approach
to obtain the mark embeddings is achieved by specifying a learnable embedding
matrix Wk ∈ Rdk×K (Du et al., 2016; Zhang et al., 2020; Zuo et al., 2020;
Li et al., 2023). Given the one-hot encoding ki ∈ {0, 1}K of mark ki, its
embedding lki ∈ Rdk is obtained as

lki = Wkki. (3.5)

3.1.2 History Encoding

The general principle behind history encoding in the context of neural MTPP
models is to construct a fixed-size embedding hi ∈ Rdh for an event ei from the
sequence of past events representations {l1, ..., li−1}, using an auto-regressive
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Figure 3.1: General workflow of neural parametrizations for MTPP models.
First, an event encoder u(·) takes the events’ inter-arrival times τi and marks
ki and outputs an event embedding ei. Event embeddings are then passed
through an auto-regressive mechanism ENC(·) (e.g. a RNN or a self-attention
encoder) to create the history embedding hi. Finally, the history embedding
of the last observed event is fed to a decoder to estimate, e.g. the joint density
f∗(τ, k;θ) of the next event.

mechanism or a set aggregator. Naturally, the main goal when constructing
hi is to capture as closely as possible relevant dynamics in the history of the
process, in order to accurately estimate the distribution of arrival times and
marks of future events.

Recurrent architectures. A natural choice to handling ordered sequence
of events is to rely on a form of recurrent architecture (Du et al., 2016; Mei
& Eisner, 2017; Guo et al., 2018b; Shchur et al., 2020a; Soen et al., 2021).
In this context, starting from an initial state h1 initialized at random, the
history embedding hi of an event ei is constructed by sequentially updating
the history embeddings at the previous time steps by using the next event’s
representation, i.e.

h2 = ENC
(
h1, l1

)
,

...

hi = ENC
(
hi−1, li−1

)
, (3.6)



60 On the Predictive Accuracy of Neural MTPP Models

where h1 ∈ Rdh is the initial state. For instance, a common choice for the
update function is the Gated Recurrent Unit (GRU) (Cho et al., 2014), which
can be summarized as:

ri = σsi

(
Wh

rhi−1 +Wl
rli−1 + br

)
, (3.7)

zi = σsi

(
Wh

zhi−1 +Wl
zli−1 + bz

)
, (3.8)

ni = tanh
(
Wl

nli−1 + bln + ri ◦
(
Wh

nhi−1 + bhn

))
, (3.9)

hi = (1− zi) ◦ ni + zi ◦ hi−1, (3.10)

where σsi(x) = 1/(1 + e−x) is the sigmoid activation function, Wh
r , Wh

z ,
Wh

n ∈ Rdh×dh , Wl
r, Wl

z, Wl
n ∈ Rdh×dl , br, bz, bln, bhn ∈ Rdh , and ◦ is the

Hadamard product. Intuitively, the reset gate ri ∈ [0, 1]dh tells the network
how much information from the previous steps hi−1 should be ignored, whereas
the update gate zi ∈ [0, 1]dh balances the new information contained in the
candidate activation ni with the old one in hi−1 to output hi. This architec-
ture, together with the Long-Short Term Memory (LSTM) network (Hochre-
iter & Schmidhuber, 1997), was initially developed to more effectively capture
long-term dependencies in data sequences by mitigating the problem of explod-
ing/vanishing gradients found in classical RNN architectures. Nonetheless, the
inherent sequential nature of RNN prevents them from computing each hi in
parallel. This is in contrast to Self-Attention (SA) mechanisms, introduced
next.

Self-attentive encoders. As an alternative to recurrent architectures, the
SA mechanism of Transformers (Vaswani et al., 2017) computes the history
embeddings hi for each ei independently as follows (Zhang et al., 2020; Zuo
et al., 2020; Enguehard et al., 2020; Li et al., 2023):

h
(h)
i = SA(h)

(
q
(h)
i ,K

(h)
i ,V

(h)
i

)
(3.11)

= W
(h)
2 σR

(
W

(h)
1

(
h̄
(h)
i

)T
+ b

(h)
1

)
+ b

(h)
2 , (3.12)

with

h̄
(h)
i = Softmax


(
q
(h)
i

)T
K

(h)
i√

dq

(V(h)
i

)T
, (3.13)
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where SA(h)(·) refers to the hth out of H parallel SA mechanisms (heads)
between a query vector q(h)i , a key matrix K

(h)
i and a value matrix V

(h)
i defined

as

q
(h)
i = W

(h)
Q li−1, K

(h)
i = W

(h)
K [l1, ..., li−1], V

(h)
i = W

(h)
V [l1, ..., li−1], (3.14)

where W
(h)
Q ,W

(h)
K ∈ Rdq×dl , W

(h)
V ∈ Rdh×dl , W

(h)
2 , W

(h)
1 ∈ Rdh×dh ,

b
(h)
1 , b

(h)
2 ∈ Rdh , and σR is the ReLU activation function. In essence, the

history embedding h
(h)
i is constructed as a weighted sum of past events’ repre-

sentations, where the attention weights are obtained by measuring a similarity
score (e.g. dot product or deep Fourier kernels (Zhu et al., 2021)) between the
projection of li−1, and the projections of {l1, ..., li−1}. Finally, the different
representations h

(h)
i learned by each of the H independent attention heads

are concatenated and fed to a feed-forward layer to produce the final history
embedding:

hi = W3

[
H⊕

h=1

h
(h)
i

]
, (3.15)

where W3 ∈ Rdh×Hdh . Architectures based on SA mechanisms can compute
the history embeddings hi for each event ei independently in parallel. However,
since each h̄i depends on all preceding events in (3.13), computing hi for all
n events scales in O(n2) time for architectures based on a SA mechanism.
Conversely, computing hi scales in O(n) time for their recurrent counterparts
(Shchur et al., 2021b).

3.1.3 Decoders

The role of the decoder in a neural MTPP model is to define a valid
parametrization of λ∗k(t;θ), Λ

∗
k(τ, k;θ), f

∗(t, k;θ), or F ∗(t, k;θ). While being
mathematically equivalent, recall that a specific choice among these functions
leads to specific requirements, as discussed in Section 2.1.1. Nonetheless, given
the encoding l ∈ Rdl of a query event e = (t, k) with t > ti−1, and its his-
tory embedding hi, the parametrization of these functions is systematically
achieved by using neural network architectures. We will consider the following
state-of-the-art neural MTPP decoders in this study:

• The Exponential Constant (EC) decoder (Upadhyay et al., 2018)
parametrizes a constant λ∗k(t;θ) between two events from a MLP that
takes hi as input.
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• The Monte-Carlo Multi-Layer Perceptron (MLP/MC) decoder (Engue-
hard et al., 2020) parametrizes λ∗k(t;θ) from a MLP that takes e and hi

as input.

• Monte-Carlo Self-Attention (SA/MC) decoder (Enguehard et al., 2020)
parametrizes λ∗k(t;θ) by letting e attend to all {h1, ...,hi}.

• The Neural Hawkes (NH) decoder (Mei & Eisner, 2017) parametrizes
λ∗k(t;θ) from a set of continuous-time LSTM equations.

• The Recurrent Marked Temporal Point Process (RMTPP) decoder (Du
et al., 2016) separately parametrizes λ∗(t;θ) as a decaying exponential
function, and a predictive PMF of marks independent of time given the
history.

• The LogNormMix (LNM) decoder (Shchur et al., 2020a) separately
parametrizes f∗(τ ;θ) as a mixture of log-normal distributions, and a
predictive PMF of marks similarly to RMTPP. Also, we consider the
LogNorm (LN) decoder, defined equivalently to LNM but with a single
mixture component.

• The Fully Neural Network (FNN) decoder (Omi et al., 2019; Enguehard
et al., 2020) parametrizes Λ∗

k(t;θ) from a MLP that takes e and hi as
inputs.

• The Cumulative Self-Attention (SA/CM) decoder (Enguehard et al.,
2020) parametrizes Λ∗

k(t;θ) by letting e attend to all {h1, ...,hi}.

In the following, we will describe and discuss each of the above decoders in
more details.

EC decoder. This is the simplest neural MTPP models amongst our base-
lines. The marked intensities are assumed to be constant between two events,
and are parametrized from a MLP that takes as input a history embedding hi,
i.e.

λ∗k(t;θ) = λ∗k = MLP(hi) = σS,k

(
wT

k (σR
(
Whi + b

)
+ bk

)
, (3.16)

where W ∈ Rdin×dh , b ∈ Rdin , wk ∈ Rdin and bk ∈ R are mark-specific weights
and biases, respectively. In (3.16), σS,k is a mark-specific softplus activation
function, defined as

σS,k(x) = βklog
(
1 + exp

(
x

βk

))
, (3.17)
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with βk ∈ R+ ensuring Rλ
1 in (2.19) (i.e. λ∗k(t) ≥ 0). The marked intensities

being independent of time between two events, the compensators are given by

Λ∗
k(t;θ) = (t− ti−1)λ

∗
k, (3.18)

and the distribution of inter-arrival times is exponential with rate
λ∗ =

∑K
k=1 λ

∗
k, i.e.

f∗(τ ;θ) = λ∗ exp(−λ∗τ). (3.19)

MLP/MC decoder. Although the EC decoder can capture arbitrary in-
fluence of past observations, it does not allow for the marked intensity func-
tions to evolve between consecutive events. To circumvent this limitation, the
MLP/MC decoder takes as input the concatenation of hi and an encoding lt

of a query time t ≥ ti−1. Specifically, the marked intensities are given by

λ∗k(t;θ) = MLP(hi, l
t) = λk + σS,k

(
wT

k (σR
(
W[hi, l

t] + b
)
+ bk

)
, (3.20)

where W ∈ Rdin×(dh+dt). In (3.20), λk ∈ R+ ensures that Rλ
2 in (2.20) (i.e.

lim
t→∞

∫ t
ti−1

λ∗k(s)ds = ∞) is met as lim
t→∞

λkt = ∞.

However, the softplus activation function in (3.20) prevents the evaluation
of Λ∗

k(t;θ) in closed form, requiring numerical integration techniques such as
Monte Carlo to approximate its value (Press et al., 2007):

Λ̃∗
k(t;θ) ≃

t− ti−1

nυ

nυ∑
j=1

λ∗k(υj ;θ), (3.21)

where υj ∼ Uniform[ti−1, t] and nυ being the number of Monte Carlo samples.

SA/MC decoder. The marked intensities are parametrized from a similar
set of equations as (3.13) and (3.12), at the major difference that the query
vector is now constructed from lt, while the key and value matrices are build
from hi. By doing so, we allow a query time t to attend to previous event
representations in Ht, i.e.

q(h)(t) = W
(h)
Q lt, K

(h)
i = W

(h)
K [h1, ...,hi], V

(h)
i = W

(h)
V [h1, ...,hi], (3.22)

a(t) = WH

[
H⊕

h=1

SA
(
q(h)(t),K

(h)
i ,V

(h)
i

)]
, (3.23)

λ∗k(t;θ) = µk + σS,k
(
wT

k a(t) + bk
)
, (3.24)
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where W
(h)
Q ∈ Rdq×dt , W

(h)
K ∈ Rdq×dh and W

(h)
V ∈ Rdh×dz , WH ∈ Rdin×Hdz ,

and wk ∈ Rdin , dz being the output dimension of the attention mechanism.
Similarly to the MLP/MC decoder, Λ∗

k(t;θ) must be approximated by numer-
ical integration techniques, e.g. as in (3.21).

RMTPP decoder. Instead of specifying the marked intensities directly, the
RMTPP decoder separately parametrizes the ground intensity λ∗(t;θ), and a
PMF of marks p∗(k;θ) independent of time:

λ∗(t;θ) = exp
(
wt(t− ti−1) + (wh)Thi + b

)
, (3.25)

p∗(k;θ) = σso (W2σR (W1h+ b1)) + b2) , (3.26)

where wt ∈ R+, wh ∈ Rdh , b ∈ R, W1 ∈ Rd1×dh , W2 ∈ RK×d1 , b1 ∈ Rd1 ,
b2 ∈ RK , and σso is the softmax activation function. The exponential trans-
formation in (3.25), along with the positivity of wt, ensure that Rλ

1 in (2.19)
and Rλ

2 in (2.20) are met. By assuming the distribution of marks to be in-
dependent of the time given the history of the process, the RMTPP decoder
makes a strong simplifying assumption, which has been criticized in subse-
quent works (Enguehard et al., 2020). However, the expression of the ground
intensity enables us to directly compute Λ∗(t;θ) in closed form:

Λ∗(t;θ) =
1

wt

(
exp
(
wt(t− ti−1) + (wh)Thi + b

)
− exp

(
(wh)Thi + b)

)
. (3.27)

Moreover, as pointed out by Shchur et al. (2020a), the RMTPP decoder defines
a Gompertz distribution (Wienke, 2010) on the inter-arrival times with shape

γ =
exp((wh)Thi+b)

wt and scale β = wt, i.e.

f∗(τ ;θ) = βγ exp (βτ − γ exp(βτ) + γ) . (3.28)

NH decoder. The marked intensities λ∗k(t) are parametrized using a single
layer MLP that takes as input a history embedding h(t) that is allowed to vary
between consecutive events, i.e:

λ∗k(t;θ) = σS,k

(
(wk)

Th(t)
)
. (3.29)

In contrast to a classical discrete-time LSTM, which would only update the
history embedding hi when the event at time ti is observed, a continuous-time
LSTM allows the history embedding to evolve with time for t > ti−1, i.e.

h(t) = oi ◦
(
2σsi

(
2c(t)

)
− 1
)
, (3.30)
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c(t) = c̄i + (ci − c̄i)exp
(
− δi(t− ti−1)

)
, (3.31)

where σsi is the sigmoïd activation function. In (3.30) and (3.31), the vectors
oi, c̄i, ci and δi are hidden states obtained from a modified set of discrete-time
LSTM equations that updates their values each time a new event appears, i.e.

δi = σS(W
k
dki−1 +Wh

dhi−1(ti) + bd), (3.32)

qi = σsi(W
k
qki−1 +Wh

qhi−1(ti) + bq), (3.33)

zi = 2σsi(W
k
zki−1 +Wh

zhi−1(ti) + bz)− 1, (3.34)

oi = σsi(W
k
oki−1 +Wh

ohi−1(ti) + bo), (3.35)

fi = σsi(W
k
fki−1 +Wh

fhi−1(ti) + bf ), (3.36)

ci = fi ◦ c(ti−1) + qi ◦ zi, (3.37)
c̄i = fi ◦ c̄i−1 + qi ◦ zi, (3.38)

where ki−1 ∈ {0, 1}K is the one-hot encoding of mark ki−1, wk ∈ Rdh , Wk
q ,

Wk
f , W

k
z , Wk

o , Wk
d ∈ Rdh×K , Wh

q , Wh
f , Wh

z , Wh
o , Wh

d ∈ Rdh×dh , and bq,
bf , bz, bo, bd ∈ Rdh . Finally, σS is the unmarked formulation of the softplus
activation function, i.e. σS(x) = β log (1 + exp (x/β)) with β ∈ R+. Here also,
one must rely on numerical integration techniques to estimate Λ∗

k(t;θ).

LNM decoder. The predictive PDF of inter-arrival times f∗(τ ;θ) is
parametrized as a mixture ofM log-normal distributions, where the parameters
of the mth mixture component are obtained via a hypernetwork, i.e. a network
parametrizing the weights of another network (Ha et al., 2016). Specifically,

f∗(τ ;θ) =
M∑

m=1

pm
1

τσm
√
2π

exp
(
− (log τ − µm)2

2σ2m

)
, (3.39)

where pm = σso
(
Wphi + bp

)
m

corresponds to the probability that τi is
generated by the mth mixture component, while µm = (Wµhi + bµ)m,
σm = exp(Wσhi + bσ)m are the mean and standard deviation of the mth

mixture component, respectively. Finally, Wp,Wµ,Wσ ∈ RM×dh and
bp, bµ, bσ ∈ RM , M being the number of mixture components. Defined sim-
ilarly to equation (3.26), the predictive PMF of marks p∗(k;θ) is assumed
to be conditionally independent of time given the history of the process. Al-
though not available in closed-form, the cumulative distribution of a mixture of
log-normals can be approximated with high precision (Abramowitz & Stegun,
1965) as

F ∗(τ ;θ) =
M∑

m=1

1

2

[
1 + erf

( log τ − µm

σm
√
2

)]
, (3.40)
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where erf(x) = 2√
π

∫ x
0 e

−s2ds is the Gaussian error function. From F ∗(τ ;θ),
we can compute Λ∗(t;θ) as:

Λ∗(t;θ) = −log
(
1− F ∗(τ ;θ)

)
. (3.41)

FNN decoder. A major bottleneck of models parametrizing λ∗k(t;θ) resides
in the marked compensators not always being available in closed-form, thus
requiring expensive numerical integration techniques. An elegant way of ad-
dressing this challenge is to directly parametrize Λ∗

k(t;θ), from which λ∗k(t;θ)
can be easily retrieved through differentiation. The original definition of FNN
(Omi et al., 2019) involved parametrizing Λ∗(t;θ) using a MLP that operated
on both the inter-arrival times and the history embeddings. In the presence of
marks, this can be expressed as follows:

Λ∗
k(t;θ) = σS,k

(
wT

k (tanh
(
wt(t− ti−1) +Whhi + b

)
+ bk

)
, (3.42)

where each weight is constrained to be positive, ensuring condition RΛ
1 in (2.21)

(i.e. Λ∗
k(t) > 0) and RΛ

4 in (2.24) (i.e. dΛ∗
k(t)/dt ≥ 0). Specifically, wk ∈ Rdin

+ ,
wt ∈ Rdin

+ , Wh ∈ Rdin×dh
+ , b ∈ Rdin

+ and bk ∈ R+. However, as pointed
out by Shchur et al. (2020a), equation (3.42) fails to satisfy RΛ

2 in (2.22) (i.e.
Λ∗
k(ti−1) = 0) as

Λ∗
k(ti−1;θ) = σS

(
wT

k (tanh
(
Whhi + b1

)
+ bk

)
> 0, (3.43)

In other terms, the original FNN model attributes non-zero probability mass
to null inter-arrival times, i.e. F ∗(0;θ) = 1 − exp

(
−
∑K

k=1 Λ
∗
k(ti−1;θ)

)
> 0.

The original formulation also fails to satisfy RΛ
3 in (2.23) (i.e. lim

t→∞
Λ∗
k(t) = ∞)

due to the saturation of the tanh activation function:

lim
t→∞

Λ∗
k(t;θ) = σS

(
din∑
d=1

wk,d + bk

)
<∞. (3.44)

To prevent both these shortcomings, Enguehard et al. (2020) proposed to re-
place the tanh activation function with a Gumbel-softplus activation:

σGS,k(x) =
[
1−

(
1 + αkexp(x)

)− 1
αk

][
1 + σS,k(x)

]
, (3.45)

with αk ∈ R+. The Gumbel-Softplus activation function being non-saturating
(i.e. lim

x→∞
σGS,k(x) = ∞), using it as a replacement for the tanh activation

function in (3.42) effectively satisfies RΛ
3 . Finally, by defining Λ∗

k(t;θ) as

Λ∗
k(t;θ) = G∗

k(t;θ)−G∗
k(ti−1;θ), (3.46)
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G∗
k(t;θ) = σS,k

(
wT

k (σGS,k

(
Wtlt +Whhi + b

)
+ bk

)
, (3.47)

we now have Λ∗
k(ti−1;θ) = 0, satisfying RΛ

2 . The expression in (3.46) defines
the generalized corrected version of FNN. Also, note that G∗

k(t;θ) takes now
as input a general encoding lt of a query time t with Wt ∈ Rdin×dt . However,
to ensure that RΛ

4 remains satisfied, lt must be monotonic in its input. There-
fore, when parametrizing a cumulative decoder, the temporal event encoding
in (3.3) cannot be used, and the weights of the encoding in (3.4) must be con-
strained to be positive. From (3.46), λ∗k(t;θ) can be finally retrieved through
differentiation:

λ∗k(t;θ) =
d

dt
Λ∗
k(t;θ). (3.48)

SA/CM decoder. The SA/CM decoder shares a similar set of equations to
(3.24) to parametrize Λ∗

k(t;θ). However, similarly to FNN, several modifica-
tions of the latter are required to ensure that the decoder meets the various
constraints imposed by Λ∗

k(t). First, the softmax activation is replaced by a
sigmoid to satisfy RΛ

4 . Moreover, as

d2σR(x)

dx2
= 0, (3.49)

the ReLU activation is replaced by a Gumbel-softplus, which prevents

d2Λ∗
k(t;θ)

dt2
=
dλ∗k(t;θ)

dt
= 0. (3.50)

In other terms, a cumulative model defined with a ReLU activation is equiva-
lent to the EC decoder in (3.16) (Enguehard et al., 2020). Moreover, given the
saturation of the sigmoid function, a term µk(t− ti−1) with λk ∈ R+ is intro-
duced to satisfy RΛ

4 . Note that including this term is equivalent to adding a
constant λk directly to λ∗k(t;θ). All these pieces stitched together, the SA/CM
decoder with a single attention head is given by

Λ∗
k(t;θ) = G∗

k(t;θ)−G∗
k(ti−1;θ), (3.51)

G∗
k(t;θ) = λk(t− ti−1) + σS,k

(
wT

k (SA
(
q(t),Ki,Vi

)
+ bk

)
, (3.52)

SA(q(t),Ki,Vi) = W2σGS,k

(
W1z̄

T
i + b1

)
+ b2, (3.53)

z̄i = σsi

(q(t)TKi√
dq

)
VT

i ,

where W1, W2 ∈ Rdz×dz
+ , b1, b2 ∈ Rdz

+ , and where each entry of WK , WV ,
WQ, wk and bk is now constrained to be positive.
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The query q(t), keys Ki, and values Vi are given in (3.22), and the model
can be extended to multi-head attention similarly to (3.23). Similar to FNN,
λ∗k(t;θ) can be retrieved through differentiation.

3.2. Related Work

Neural Marked Temporal Point Processes. Simple parametric forms of
MTPP models, such as the self-exciting Hawkes process (Hawkes, 1971), or
the self-correcting process (Isham & Westcott, 1979), rely on strong modeling
assumptions that inherently limit their flexibility. To capture complex dynam-
ics of real-world patterns, the Machine Learning (ML) community eventually
turned to the latest advances in neural modeling and proposed a novel class
of MTPP models based on various neural-network architectures. Precursor to
the field, Du et al. (2016) proposed to encode the history using a vanilla RNN,
an idea that has been largely adopted and improved in subsequent works (Mei
& Eisner, 2017; Xiao et al., 2017b,a; Li et al., 2018; Guo et al., 2018b; Türk-
men et al., 2019; Zhu et al., 2020; Soen et al., 2021). Inspired by their huge
success as sequence encoders in Natural Language Processing (NLP), another
line of work relies instead on self-attention mechanisms to encode the history
(Zuo et al., 2020; Zhang et al., 2020; Zhu et al., 2021; Yang et al., 2022; Li
et al., 2023; Yuan et al., 2023). Most of these works focus on modeling the tra-
jectories of future events through the (marked) intensity functions. However,
parametrizations of λ∗k(t) often come at the cost of being unable to evaluate
the log-likelihood in closed-form, requiring expensive Monte Carlo integration.
This consideration motivated the design of compensator-based approaches that
parametrize Λ∗

k(t) (Omi et al., 2019; Enguehard et al., 2020), from which λ∗k(t)
can be retrieved through differentiation. Instead of parametrizing the (cumula-
tive) marked intensities, Xiao et al. (2017b) directly modeled the PDF of inter-
arrival times with a Gaussian distribution, while Shchur et al. (2020a) relies
on the flexibility of a mixture of log-normal distributions. However, this work
supposes conditional independence of arrival times and marks, an assumption
later alleviated in Waghmare et al. (2022). Finally, Ben Taieb (2022) proposed
to learn from the CRPS objective a recurrent neural spline parametrization of
the conditional quantile function, enabling analytical sampling of inter-arrival
times. Other alternatives to NLL optimization techniques for training neural
MTPP models include variational objectives (Boyd et al., 2020), reinforcement
learning (Upadhyay et al., 2018; Li et al., 2018), noise contrastive estimation
(Guo et al., 2018b; Mei et al., 2020), adversarial training (Xiao et al., 2017a;
Yan et al., 2018; Zhu et al., 2020) and score-matching (Sahani et al., 2016;
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Li et al., 2023). Although any MTPP model could in theory be trained using
these optimization techniques, we focus our analysis on the NLL objective. For
surveys on (neural) MTPP modeling, refer to Shchur et al. (2021b) and Yan
(2019a).

Experimental studies. Most papers in the neural MTPP literature mainly
focused on proposing methodological improvements inspired by contemporary
advances in deep learning techniques. While these contributions are paramount
to driving future progress in the field, few studies have been carried out to iden-
tify sources of empirical gains across neural architectures and highlight future
interesting research directions. The work of Lin et al. (2021) is the closest
to our experimental study. While they also compared the impact of various
history encoders and decoders, they did not discuss the influence of different
event encoding mechanisms. However, we found that specific choices for this
architectural component can lead to drastic performance gains. Additionally,
they did not include simple parametric models to their baselines, such as the
Hawkes decoder. Considering these models in an experimental study allows
however to fairly evaluate the true gains brought by neural architectures. We
also assess the calibration of neural and non-neural MTPP models on the dis-
tribution of arrival times and marks, and our experiments are conducted across
a wider range of real-world datasets. Finally, our results are supported by rig-
orous statistical tests. Lin et al. (2022) also conducted empirical comparisons
in the context of neural MTPP models but their attention was mainly focused
on deep generative models.

3.3. Experimental Study

We carry out a large-scale experimental study to assess the predictive accu-
racy of state-of-the-art neural MTPP models on 15 real-world event sequence
datasets and a synthetic Hawkes dataset in a carefully designed unified setup.
In particular, we study the influence of each major architectural component,
including event encoding, history encoder, and decoder in estimating the time
and mark predictive distributions. For completeness, we also include classi-
cal parametric MTPP models into our set of baselines, such as the Hawkes
and Poisson processes. The next section summarizes the various architectural
components that we have considered in our experimental study. Section 3.3.2
presents the datasets including summary statistics and pre-processing steps.
Section 3.3.3 describes our experimental setup. Finally, Section 3.3.4 presents
the evaluation metrics and statistical tools used to assess the accuracy of the
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considered models, and Section 3.3.5 describes the procedure employed to ag-
gregate the results across multiple datasets.

3.3.1 Models

To ease the understanding of the following sections, a brief summary of the
different architectures considered in our experiments is presented below. Table
3.1 summarizes the correspondence between all variations of event encoding,
history encoder, and decoder, and their mathematical expressions.

Event encoding mechanisms. For the event encoding mechanism, we con-
sider the raw inter-arrival times τ (Times Only (TO)), the logarithms of inter-
arrival times (Log-Times Only (LTO)), a temporal encoding of arrival times
(Temporal (TEM)), and a learnable encoding of inter-arrival times (Learnable
(LE)). Additionally, we include all their variants resulting from the concate-
nation of the mark embeddings lk, i.e. Concatenate (CONCAT) with TO and
lk, Log-Concatenate (LCONCAT) with LTO and lk, Temporal With Labels
(TEMWL) with TEM and lk, and Learnable With Labels (LEWL) with LE
and lk.

History encoders. To encode the history of the process, we employ the GRU
and SA mechanism presented in Section 3.1.2. Additionally, we consider a Con-
stant (CONS) history encoder that systematically outputs hi = 1dh . Note that
a decoder equipped with this encoder parametrizes a function independent of
the history and reduces essentially to a IPP—a process whose marked intensity
functions are independent of the history, as in (2.31).

Decoders. The decoders considered in this experimental study can be clas-
sified on the basis of the function that they parametrize, as well as on the
assumptions they make regarding the distribution of inter-arrival times and
marks. As described in Section 3.1.3, decoders that parametrize λ∗k(t;θ) are
the EC , MLP/MC , SA/MC and NH decoders. In this category, we also con-
sider as classical baselines a Hawkes decoder with exponential kernels, as well as
a simple Poisson decoder, whose marked intensities are parametrized by (3.1)
and (2.29), respectively. On the other hand, RMTPP separately parametrizes
the ground intensity λ∗(t;θ) and a time-independent PMF of marks p∗(k;θ),
while LNM and its single mixture version, LN, separately parametrize the PDF
of inter-arrival times f∗(τ ;θ) and a time-independent PMF of marks. Recall
that for LN, LNM, and RMTPP, (inter-)arrival times and marks are assumed
to be conditionally independent given the history. Finally, FNN and SA/CM
directly parametrize Λ∗

k(t;θ).
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Table 3.1: Summary of the various architectural components considered in the
comparative study. For clarity, the dependence on θ is omitted.

Component Name Acronym Parametrization

Event encoder

Times TO li = τi

Log-times LTO li = log τi

Concatenate CONCAT lti = τi, lki as in (3.5), li as in (3.2)
Log-concatenate LCONCAT lti = log τi, lki as in (3.5, li as in (3.2

Temporal TEM li as in (3.3)
Temporal with labels TEMWL lti as in (3.3), lki as in (3.5), li as in (3.2)

Learnable LE li as in (3.4)
Learnable with labels LEWL lti as in (3.4), lki as in (3.5), li as in (3.2)

History encoder
GRU GRU hi = GRU(l1, ..., li−1) as in (3.6)

Self-attention SA hi as in (3.12)
Constant CONS hi = 1dh

Component Name Acronym Parametrization Closed-form MLE

Decoder

Exponential constant EC λ∗
k as in (3.16) ✓

MLP MLP/MC λ∗
k(t) as in (3.20) ✗

FullyNN FNN Λ∗
k(t) as in (3.46) ✓

LogNormMix LNM f∗(τ) as in (3.39), p∗(k) in (3.26) ✓

LogNorm LN f∗(τ) as in (3.39) with M = 1, p∗(k) in (3.26) ✓

RMTPP RMTPP λ∗(t) as in (3.25), p∗(k) in (3.26) ✓

Neural Hawkes NH λ∗
k(t) as in (3.29) ✗

Self-attention SA/MC λ∗
k(t) as in (3.24) ✗

Cumulative Self-attention SA/CM Λ∗
k(t) as in (3.52) ✓

Hawkes Hawkes λ∗
k(t) as in (3.1) ✓

Poisson Poisson λ∗
k(t) as in (2.29) ✓

We define a model as a specific choice of event encoding mechanism, history
encoder, and decoder, e.g. GRU-MLP/MC-TO corresponds to a model using
the GRU encoder to build hi, the MLP decoder to parametrizes λ∗k(t), and
where the events are encoded using the TO event encoding. While in most
cases, any variation of a component can be seamlessly associated with any
other variation of other components, some combinations are either impossible
or meaningless. Indeed, all cumulative decoders (SA/CM and FNN) cannot
be trained with the TEM or TEMWL event encodings, as both would violate
the monotonicity constraint of Λ∗

k(t;θ). Moreover, as all event encodings are
irrelevant with respect to the CONS history encoder, all CONS-EC models are
equivalent. For the NH decoder, we stick to the original model definition, as it
can be hardly disentangled into different components. Although not required
to define a valid parametrization of a MTPP, we also consider for completeness
the setting where a constant baseline intensity term λk ≥ 0 (B) is added to
λ∗k(t;θ) of the EC and RMTPP decoders. A complete list of the considered
combinations is given in Table C.7.
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We further classify the different models into three categories: parametric, semi-
parametric, and non-parametric. Parametric MTPP models include classical
(i.e. non-neural) architectures, characterized by strong modeling assumptions
and hence, low flexibility. We consider the Hawkes and Poisson decoders as
parametric baselines. On the other hand, semi-parametric models include ar-
chitectures that still make assumptions regarding the distribution of inter-
arrival times, but their parameters are obtained from the output of a neural
network. All models equipped with LNM, LN, RMTPP, or EC decoders are
deemed semi-parametric. All remaining baselines, i.e. FNN, MLP, SA/MC,
SA/CM and NH are considered non-parametric models.

3.3.2 Datasets

Real-world datasets. A total of 15 real-world datasets containing sequences
of various lengths are used in our experiments, among which 7 possess marked
events. A brief description is presented below, while their general statistics are
summarized in Tables 3.2 and 3.3.

• Marked Datasets

– LastFM 1 (Hidasi & Tikk, 2012): This dataset comprises records
of people listening to songs over time. Each sequence relates to a
user, and each mark corresponds to the artist of the song.

– MOOC 1 (Kumar et al., 2019): This dataset captures the activities
of students on a Massive Open Online Course (MOOC) platform.
A sequence corresponds to a student, and the mark refers to the
type of activity carried out by the student, e.g. watching a video or
answering a quiz.

– Wikipedia 1 (Kumar et al., 2019) : Contains records of edits made
to Wikipedia pages in the course of a month. Each sequence corre-
sponds to a given page, and the marks relate to specific editors.

– MIMIC2 2 (Du et al., 2016) : EHR of patients in an intensive care
units for seven years. A sequence corresponds to a patient, and the
marks are the types of diseases.

– Github 3 (Trivedi et al., 2019) : This dataset captures the ac-
tivity records of public account owners on the open-source plat-

1https://github.com/srijankr/jodie/
2https://github.com/babylonhealth/neuralTPPs
3https://github.com/uoguelph-mlrg/LDG
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form GitHub, covering the period from January 2013 to December
2013. Each sequence corresponds to an account, and the marks de-
scribe the types of action performed, i.e. "Watch", "Star", "Fork",
"Push", "Issue", "Comment Issue", "Pull Request", "Commit".

– Stack Overflow 5 (Du et al., 2016) : Contains records of the times
users received a badge on the question-answering platform Stack
Overflow between 2012 and 2014. Each sequence corresponds to a
user, and the marks are the types of badges received, e.g. "Stellar
Question", "Guru", "Great Answer".

– Retweets 2 (Zhao et al., 2015) : This dataset comprises streams
of retweet events following the creation of an original tweet. Each
sequence corresponds to a tweet, and marks refer to the category to
which the retweeter belongs based off his/her popularity, i.e. small,
medium, and large number of followers.

• Unmarked Datasets (Shchur et al., 2020a,b)

– Twitter 4: This dataset contains records of tweets made over sev-
eral years.

– PUBG 4: Records of players’ deaths in the online game PUBG.
Each sequence corresponds to a game, and a timestamp refers to
the death of a given player.

– Yelp Airport 4: This dataset contains customers check-in times to
319 businesses on the platform Yelp at the McCarran International
Airport. Each sequence corresponds to a business.

– Yelp Mississauga 4: Similar to the Yelp Airport dataset, but for
319 businesses in the city of Mississauga.

– Yelp Toronto 5: This dataset contains sequences of reviews made
by customers on the platform Yelp for 300 restaurants in the city
of Toronto. Each sequence corresponds to a restaurant.

– Reddit Comments 4: Records of comments in reply to Reddit
discussion threads within 24 hours of the original post submission.
The data is recorded between 2018 and 2020, and each sequence
corresponds to a discussion thread.

4https://github.com/shchur/triangular-tpp
5https://github.com/shchur/ifl-tpp
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Table 3.2: Marked datasets’ statistics after pre-processing. Mean Sequence
Length (MSL) corresponds to the average number of events per sequence.

Sequences Events MSL Max Len. Min Len. Marks

Wikipedia 590 30472 51.6 1163 2 50
MOOC 7047 351160 49.8 416 2 50
LastFM 856 193441 226.0 6396 2 50
MIMIC2 599 1812 3.0 32 2 43
Github 173 20657 119.4 4698 3 8

Stack Overflow 7959 569688 71.6 735 40 22
Retweets 24000 2610102 108.8 264 50 3

– Reddit Submissions 4: This dataset comprises records of submis-
sions made to a political sub-Reddit between 2017 and 2020. Each
sequence corresponds to a 24 hours window.

– Taxi 4: Contains the records of taxi pick-ups in the South of Man-
hattan. Each sequence corresponds to a taxi, and timestamps refer
to the times at which passengers were taken on board.

Pre-processing. Some marked datasets, such as Wikipedia and LastFM, orig-
inally presented a very large amount of marks, whose distributions turn out
to be highly spread across their respective domains. This observation raises
two issues: (1) Some marks are therefore highly under-represented, rendering
the task of learning their underlying distribution difficult, and (2), the GPU
memory requirements can increase substantially with the number of marks,
which is even more exacerbated when Monte Carlo samples need to be drawn.
We provide more details regarding the time and space complexity of the dif-
ferent models later in Section 3.3. Hence, with the incentive to avoid either of
these two bottlenecks, each marked dataset is filtered to only contain events
belonging to the 50 most represented marks. The resulting sequences contain-
ing less than two events are further removed from the dataset, which makes
the number of distinct marks in MIMIC2 drop from 75 to 43. Finally, to avoid
numerical instabilities, the arrival times of events are scaled in the interval
[0,10]. Specifically, we compute ti,scaled = 10ti/tmax, where tmax is the largest
observed timestamp in the dataset. Unmarked datasets do not go through
any processing steps, at the exception of the scaling and removal of sequences
containing less than two events.
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Table 3.3: Unmarked datasets’ statistics after pre-processing. MSL corre-
sponds to the average number of events per sequence.

Sequences Events MSL Max Len. Min Len.

Reddit Submissions 1094 1235128 1129.0 2658 362
Reddit Comments 1355 400933 295.9 2137 4

Taxi 182 17904 98.4 140 12
Twitter 1804 29862 16.6 169 2

Yelp Toronto 300 215146 717.2 2868 424
Yelp Airport 319 9716 30.5 55 9

Yelp Mississauga 319 17621 55.2 107 3
PUBG 3001 229703 76.5 97 26

As observed in Tables 3.2 and 3.3, the considered datasets are relatively di-
verse in their characteristics. Indeed, some datasets, such as Yelp Toronto
or LastFM, possess a relatively short number of sequences with high MSL,
while others, such as Twitter or MOOC, display the exact opposite charac-
teristics. Figure 3.2 shows the distributions of the inter-arrival times loga-
rithms across all sequences for all real-world datasets, as well as the mark
distribution across all sequences for marked datasets. As observed, the dis-
tribution of the pooled (log) inter-arrival times differ significantly from one
dataset to the other, in some cases presenting characteristics such as multi-
modality (LastFM, MOOC, Wikipedia, Yelp Toronto, PUBG) or large variance
(MOOC, Wikipedia, Github, Yelp Toronto). The distribution of pooled marks
also shows different characteristics. While the marks look uniformly spread
across their domains on LastFM, MOOC, and Wikipedia, their distribution
appears sharper on Github, MIMIC2, Stack Overflow, and Retweets. Such
diversity should be empirically beneficial, as it would allow us to assess the
predictive accuracy across a wider range of real-world applications. In Figures
C.3, C.4 and C.5 of Appendix C.5, we show the distribution of inter-arrival
times and marks for some randomly sampled sequences in each dataset.
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Figure 3.2: Distribution of log τ (top left) and mark distribution (top right)
for marked datasets, after pre-processing. As all rows share a common x-axis,
we show the distribution of log τ instead of τ to improve readability. For
unmarked datasets, only the distribution of log τ (bottom) is reported.

Synthetic datasets. We generate a synthetic dataset from the multidimen-
sional Hawkes process with exponential kernels as in (2.42)-(2.43) with the
following parameter values:

λ =


0.2
0.6
0.1
0.7
0.9

γ =


0.25 0.13 0.13 0.13 0.13
0.13 0.35 0.13 0.13 0.13
0.13 0.13 0.2 0.13 0.13
0.13 0.13 0.13 0.3 0.13
0.13 0.13 0.13 0.13 0.25

β =


4.1 0.5 0.5 0.5 0.5
0.5 2.5 0.5 0.5 0.5
0.5 0.5 6.2 0.5 0.5
0.5 0.5 0.5 4.9 0.5
0.5 0.5 0.5 0.5 4.1

 ,

where the matrix γ was scaled to have a spectral radius of approximately
0.8, guaranteeing stationarity of the process (Bacry et al., 2020). The process
essentially corresponds to a marked process with K = 5 marks, from which
we simulate 5 distinct datasets of 1000 sequences using the library tick (Bacry
et al., 2018).
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3.3.3 Experimental Setup

For each real-world and synthetic dataset, we randomly split the sequences
S into non-overlapping train/validation/test splits of sizes 60%/20%/20%, re-
spectively. This yields Strain, Sval, and Stest with S = Strain ∪ Sval ∪ Stest.
The models are trained to minimize the NLL objective in (2.49) on the train-
ing sequences using mini-batch gradient descent (Ruder, 2017). At each epoch,
the NLL is also evaluated on the validation sequences Sval, and the training
procedure is interrupted if the number of epochs reaches 500, or if no improve-
ment is observed for 20 consecutive epochs. In the latter case, the model’s
parameters are reverted to their state of lowest validation loss. For all models,
optimization is carried out using the Adam optimizer (Kingma & Ba, 2014)
with an initial learning rate of 10−3. If no improvement in validation loss is
observed for 5 consecutive epochs, the learning rate is divided by a factor of 2,
and training continues. We repeat this protocol 5 times using different random
train/validation/test splits.

We conduct experiments with different values of event encoding dimension,
specifically {4, 8, 16, 32}, as well as varying the number of hidden units for
MLP layers in {8, 16, 32}. For models utilizing GRU or SA mechanisms (at
the encoder or decoder stage), we explore different numbers of hidden units
in {8, 16, 32, 64}, and consider one or two layers. In the case of SA encoders
and decoders, we consider one or two heads, and we employ layer normaliza-
tion which has been shown to aid convergence of Transformer architectures
(Xiong et al., 2020). Additionally, the number of mixtures in LNM is explored
in {8, 16, 32, 64}. To determine the model’s hyperparameters, we follow the
following procedure. For each model and dataset split, we randomly select
five hyperparameter configurations. The model is trained using each of these
configurations, and we select the configuration with the lowest validation loss.
These five best configurations (which may differ depending on the split) are
then evaluated on the respective test set. Finally, we report the average test
metrics as described in the following section.

3.3.4 Evaluation Metrics

Once the MTPP model is trained, yielding the parameters θ̂, we consider
a range of metrics to assess the performance of the model in terms of the
time and mark prediction tasks, which involve estimating f∗(τ) and p∗(k|τ),
respectively. Among other metrics, a common practice in the MTPP literature
consists in reporting the NLL in (2.49) averaged over all sequences in Stest.
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However, reporting a single NLL metric encompasses the contributions of time
and mark predictive distributions, effectively obscuring how a model actually
performs on fitting the two distributions separately. Consequently, as discussed
in Section 2.1.5, we split the NLL in (2.49) into LT and LM terms6, highlighting
the separate contributions of each of these two terms to the total NLL metric:

L(θ̂;Stest) =− 1

L

L∑
l=1

[
nl∑
i=1

log f∗(τl,i; θ̂)− log(1− F ∗(T ; θ̂))

]
︸ ︷︷ ︸

LT (θ̂,Stest)

− 1

L

L∑
l=1

[
nl∑
i=1

log p∗(kl,i|τl,i; θ̂)

]
︸ ︷︷ ︸

LM (θ̂,Stest)

. (3.54)

On the other hand, a model’s ability to predict the mark of the next event is
measured by means of the mark averaged F1-score in (2.72). Recall that the
mark of the next event can be predicted as

k̃ = argmax
k∈K

p∗(k|t; θ̂) = argmax
k∈K

λ∗k(t; θ̂), (3.55)

and the mark averaged F1-score is obtained as

F1-score =
1

K

K∑
k′=1

2× Pk′ × Rk′

Pk′ + Rk′
, (3.56)

where, noting S = |Stest|,

Pk′ =
1

S

S∑
l=1

1

nl

nl∑
i=1

1

(
k̃i,l = k′, ki,l = k′

)
[
1

(
k̃i,l = k′, ki,l = k′

)
+ 1

(
k̃i,l = k′, ki,l ̸= k′

)] , (3.57)

Rk′ =
1

S

S∑
l=1

1

nl

nl∑
i=1

1

(
k̃i,l = k′, ki,l = k′

)
[
1

(
k̃i,l = k′, ki,l = k′

)
+ 1

(
k̃i,l ̸= k′, ki,l = k′

)] . (3.58)

For a mark k′ ∈ K, the term 1

(
k̃i,l = k′, ki,l = k′

)
is equal to 1 when the

predicted and observed mark at time ti are both equal to k′, which corresponds
6For the remainder of the discussion, we omit the explicit dependency of LT and LM on

θ̂ and Stest.
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to a true positive for the k′-th mark. In this context, the 1
(
k̃i,l = k′, ki,l ̸= k′

)
is equal to 1 if the predicted mark at time ti is equal to k′, while the observed
mark is different to k′, which accounts for false positive. Finally, the term
1

(
k̃i,l ̸= k′, ki,l = k′

)
is equal to 1 if the observed mark at time ti is equal to

k′, while the model predicted predicted a different mark than k′, i.e. a false
negative for the k′-th mark.

Calibration. While achieving a low out-of-sample NLL score is crucial, it is
also important to ensure that the predictive distributions are well-calibrated.
As discussed in Section 2.2.1, calibration refers to the statistical consistency
between the predicted distribution and the observed outcomes (Gneiting et al.,
2007). Formally, recall that a model that outputs a predictive CDF F ∗(τ ; θ̂)
(which may be retrieved from f∗(τ ; θ̂), λ∗(t; θ̂) or Λ∗(t; θ̂)) is probabilistically
calibrated if (Dawid, 1984; Kuleshov et al., 2018):

P
(
F ∗(τ ; θ̂) ≤ p

)
= p, ∀p ∈ [0, 1], (3.59)

where the probability is taken over τ and h. If the predictive distributions
F ∗(τ ;θ) are well-calibrated, it means that 90% prediction intervals for inter-
arrival times would, on average, contain the observed inter-arrival times 90%
of the time. Similarly, in the context of mark prediction, top label calibration
is defined as (Guo et al., 2017)

P
(
k = argmax

k∈K
p∗(k|τ ; θ̂) | max

k∈K
p∗(k|τ ; θ̂) = p

)
= p ∀p ∈ [0, 1], (3.60)

where the probability is also taken over all h. Intuitively, if p∗(k|τ ; θ̂) is well-
calibrated, it means that 90% of predictions made with a confidence level of
0.9 should match, on average, the observed mark 90% of the time.

We measure the probabilistic calibration of the time predictive distribution
using the PCE, defined as (Dheur & Ben Taieb, 2023):

PCE =
1

M

M∑
m=1

∣∣∣∣∣
n∑

i=1

1[F ∗(τi; θ̂) ≤ pm]

n
− pm

∣∣∣∣∣ , (3.61)

where pm = m
M ∈ [0, 1] are specified probability levels, n =

∑L
l=1 nl, and where

we set M = 50. For the predictive PMF of marks, we report the ECE (Naeini
et al., 2015) defined as:

ECE =
1

M

M∑
j=1

∣∣∣acc(bm)− conf(bm)
∣∣∣, (3.62)
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where acc(bm) and conf(bm) represent the accuracy and average confidence,
respectively, within the mth bin bm, out of a total of M bins. Refer to Section
2.2.1 for further details. We set M = 10, and lower PCE and ECE are better.

Reliability diagrams. As discussed in Section 2.2.1, a disadvantage with
PCE and ECE metrics is that information regarding the calibration error at
individual probability levels p1, ..., pM , or within individual bins b1, ..., bM , is
lost. Reliability diagrams are visual tools that can be used to assess the prob-
abilistic calibration of a model at a fine-grained level for both continuous and
discrete distributions. For the time predictive distributions, a reliability dia-
gram is obtained by plotting the empirical CDF

∑n
i=1

1[F ∗(τi;θ̂)≤pm]
n in (3.61)

against all probability levels pm. For the mark predictive distributions, it is
obtained by plotting acc(bm) against conf(bm) for all bm. In both cases, a
probabilistically calibrated model should align with the diagonal line, and any
significant deviation from it corresponds to miscalibration.

Statistical comparisons. We further conduct statistical pairwise compar-
isons between all decoders, for each metric separately. Following Demšar (2006)
and García & Herrera (2008), we consider the setting in which a statistical sam-
ple corresponds to the performance of a decoder on a metric of interest for a
given dataset. Hence, for a given metric, this implies that each decoder is
associated to exactly one sample per dataset. First, for each metric separately,
Friedman test (Friedman, 1937, 1940) is employed to find at least one statisti-
cally significant difference among all decoders. If the null hypothesis is rejected
at the α = 0.05 significance level, we proceed with comparing each decoder
against each other, using Holm’s post-hoc test (Holm, 1979) to account for mul-
tiple hypothesis testing. The outcome of the pairwise comparisons is displayed
on Critical Distance (CD) diagrams (Demšar, 2006), which show the average
rank of a model on a metric of interest across all datasets, as well as groups of
models that are not statistically different from one another at a given signifi-
cance level. For additional details on Friedman and Holm’s post-hoc tests, we
refer the reader to Appendix C.1.

3.3.5 Results Aggregation

Given the high number of variations per model component, the number of pos-
sible combinations renders the comparison of all individual models across every
dataset unmanageable. To overcome this challenge, we aggregate the model
results across all datasets for each metric separately as follows. When com-
paring different event encodings, we first group all models that are equipped
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with a specific decoder variation (e.g. MLP/MC). Then, among this de-
coder group, we further group all models by event encoding variations (e.g.
TO-Any history encoder-MLP/MC). We then compute the average perfor-
mance of that event encoding-decoder group on a given dataset with respect
to each metric. Finally, for each metric, we rank this encoding-decoder group
against other encoding-decoder groups based on their average score on the
same dataset. We apply this operation for each dataset separately and report
the average and median scores, as well as the average rank of that component
variation group across all datasets.

Moreover, as the scale of the NLL metrics (LT and LM ) vary significantly
from one dataset to another, we standardize their values on each dataset sepa-
rately prior to applying the aggregation procedure above. For each model, we
compute a standardized NLL metric L (LT or LM ) as

Lm
d −md

IQR
, (3.63)

where Lm
d is the NLL value of model m on dataset d, while md and IQR are

the median and inter-quartile ranges of NLL values for all models on dataset
d, respectively.

3.4. Results and Discussion

Tables 3.4 and 3.5 present the average results across all marked datasets for dif-
ferent variations of decoders and event encoding/history encoders, respectively.
Table 3.6 displays the results for the combination of architectural components
that achieved the lowest LT and LM on average across all marked datasets
and decoders. Appendix C.2 provides the same results for unmarked datasets,
while Appendix C.3 includes additional raw metrics and standard errors for
each dataset. In the tables, the "Mean" and "Median" columns represent the
average and median aggregated scores, respectively. The "Rank" column indi-
cates the average rank across all marked datasets, as explained in the previous
section. For the subsequent discussion, we will focus on the "Mean" column.

We would like to note that while these tables include all marked datasets,
we found that certain datasets (MIMIC2, Stack Overflow, Taxi, Reddit Subs,
Reddit Comments, Yelp Toronto, and Yelp Mississauga) may not be suitable
for benchmarking neural MTPP models, as most decoders would achieve com-
petitive time and mark predictive performance on them. We urge researchers
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to exercise caution when using these datasets in future studies, and we will dis-
cuss this concern later in this section. For completeness, we provide the results
of the aggregation procedure with these datasets excluded from the analysis in
Appendix C.4, and we found no significant differences in the results.

Analysis of the event encoding. Comparing the results in Table 3.4, we aim
to provide answers to the two following questions: (1) Are vectorial represen-
tations of time more appropriate to estimate the distributions of inter-arrival
times? (2) Do we need to encode past mark occurrences to better model the
distribution of future arrival times and marks?

(1) We observe that vectorial representations of time (i.e. TEM and LE in
opposition to TO and LTO) improve LT and PCE scores for the EC and
both SA decoders. Given that a model equipped with the EC decoder only
uses the event encoding mechanism at the history encoding stage, this finding
suggests that GRU and SA encoders rely on expressive transformations of
time to capture patterns of event occurrences. However, we observed that the
GRU encoder is rather stable with respect to the time encoding employed,
while the performance of the SA encoder drastically decreases with TO or
LTO encodings. Added to the fact that both SA decoders only perform well
when using TEM and LE, we conclude that self-attention mechanisms must
be combined with vectorial representations of time to yield good performance
in the context of neural MTPP models.

Furthermore, a log transformation of inter-arrival times (i.e. LTO) improves
performance on the same metrics for the RMTPP, FNN and MLP/MC de-
coders. Using the LTO encoding in combination with the RMTPP decoder
effectively defines an inverse Weibull distribution for the inter-arrival times
(Kleiber & Kotz, 2003). It appears to be a better fit for the data than the
Gompertz distribution from the original formulation of RMTPP.

Moreover, for FNN and MLP/MC, we found that the last softplus activation
prevents the gradient of λ∗(t;θ) to taking large values for very short inter-
arrival times. However, in many of the considered datasets, most events occur
in clusters during extremely short time spans, requiring λ∗(t;θ) to change
quickly between two events. The LTO encoding in combination with the soft-
plus activation allows steeper gradients for short inter-arrival times and thus
enables rapid changes in λ∗(t;θ). As a result, the FNN and MLP/MC decoders
can reach lower LT with the LTO encoding.



83

(2) Including a mark representation in the event encoding generally improves
performance in terms of LT and PCE when moving from TO to CONCAT
and from LTO to LCONCAT. On the one hand, this observation suggests
that information contained in previous marks does help the model to better
estimate the arrival times of future events. However, we observe that in most
cases, TEMWL and LEWL encodings show higher LT compared to their TE
and LE counterparts. Therefore, relevant information contained in previous
marks appears less readily exploitable by the models when the mark embedding
is concatenated to a vectorial representation of time.

All decoders improve substantially with respect to LM , ECE, and F1-score
metrics when the mark is included in the event encoding. While expected, this
finding confirms that expressive representations of past marks are paramount
to the mark prediction task.

Analysis of the history encoder. From the results of Table 3.5, we observe
that models equipped with a GRU history encoder yield overall better per-
formance with respect to all time and mark-specific metrics compared to ones
equipped with a SA encoder. While self-attention mechanisms have gained
increasing popularity since their introduction by Vaswani et al. (2017) for se-
quence modeling tasks, we found that they are on average less suited than their
RNN counterparts in the context of MTPP modeling. Specifically, the GRU
encoder is more stable with respect to the choice of event encoding mechanism,
while the SA encoder requires vectorial event representation to achieve good
performance. Furthermore, the CONS history-independent encoder systemat-
ically achieves the worst results with respect to all metrics. This observation
confirms the common assumption that future event occurrences are directly
influenced by past observations in real-world processes.

Analysis of the decoder. In Table 3.6, we report for each decoder separately
the combination that yielded the best performance with respect to LT (top
rows) and LM (bottom rows), on average across all marked datasets. While
we previously explained that some variations of event encoding and history
encoders worked on average better for a given decoder, it does not necessarily
mean that the best combination includes that variation. Moreover, we find that
a single combination does not perform equally well on both metrics separately.
In the following, we will thus focus our discussion on the top-row models of
Table 3.6 for time-related metrics (LT , PCE), and on bottom-row models for
the mark-related ones (LM , ECE, F1-score).
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Table 3.4: Average and median scores, as well as average ranks per decoder
and variation of event encoding, for marked datasets. Best results are high-
lighted in bold. Among others, our key insights include that (1) the SA/MC
and SA/CM decoders achieve significantly lower LT and PCE when combined
with vectorial representations of time (i.e. TEM and LE) compared to the
TO and LTO encodings, (2) in comparison to the TO encoding, LTO sig-
nificantly improves performance on the LT and PCE for the RMTPP, FNN
and MLP/MC decoders, and (3) including a representation of past observed
marks when encoding the history (CONCAT, TEMWL, LEWL) is paramount
to achieve good performance with respect to the LM , ECE and F1-score for
all decoders. Refer to text for more details, and to Section 3.3.5 for details on
the aggregation procedure.

Marked Datasets

LT PCE LM ECE F1-score

Mean Median Rank Mean Median Rank Mean Median Rank Mean Median Rank Mean Median Rank

EC-TO 0.59 0.56 6.5 0.2 0.23 6.25 0.19 0.21 6.5 0.44 0.44 7.12 0.19 0.17 6.88
EC-LTO 0.7 0.57 7.25 0.2 0.23 6.38 0.15 0.17 5.5 0.44 0.45 7.0 0.19 0.17 7.25

EC-CONCAT 0.13 0.14 2.5 0.17 0.15 2.25 -0.51 -0.75 2.75 0.34 0.31 1.88 0.3 0.28 2.12
EC-LCONCAT 0.36 0.29 4.25 0.19 0.2 4.75 -0.45 -0.66 3.5 0.34 0.3 2.75 0.28 0.27 2.88

EC-TEM 0.2 0.17 4.38 0.18 0.15 4.5 0.18 0.2 6.38 0.42 0.42 6.12 0.2 0.18 5.88
EC-TEMWL 1.48 0.3 4.25 0.19 0.17 4.88 -0.67 -0.78 2.0 0.33 0.27 2.38 0.3 0.29 1.88

EC-LE 0.05 0.11 3.0 0.18 0.15 2.88 0.15 0.15 5.38 0.41 0.42 5.38 0.2 0.18 5.75
EC-LEWL 0.17 0.19 3.88 0.18 0.15 4.12 -0.33 -0.59 4.0 0.35 0.35 3.38 0.29 0.28 3.38

LNM-TO -0.95 -0.57 6.0 0.02 0.02 5.38 0.06 0.11 6.88 0.44 0.45 6.88 0.19 0.17 7.62
LNM-LTO -0.58 -0.59 6.25 0.02 0.01 5.5 0.03 0.06 6.38 0.44 0.46 7.25 0.19 0.17 6.5

LNM-CONCAT -1.14 -0.98 2.0 0.02 0.01 4.0 -2.25 -1.47 1.38 0.25 0.21 1.75 0.39 0.35 1.5
LNM-LCONCAT -0.83 -0.83 2.62 0.02 0.01 2.12 -1.87 -1.18 2.88 0.29 0.25 2.75 0.34 0.31 2.88

LNM-TEM -0.87 -0.79 4.75 0.02 0.01 4.5 0.03 0.05 6.62 0.42 0.44 5.75 0.2 0.18 6.0
LNM-TEMWL -0.83 -0.87 4.75 0.03 0.02 4.12 -1.99 -1.49 2.25 0.28 0.25 2.12 0.36 0.32 2.25

LNM-LE -1.11 -0.78 5.12 0.02 0.02 6.12 0.0 0.02 6.12 0.42 0.44 6.12 0.2 0.18 5.88
LNM-LEWL -0.95 -0.92 4.5 0.02 0.01 4.25 -1.89 -1.18 3.5 0.3 0.28 3.38 0.32 0.29 3.38

FNN-TO 0.96 0.68 4.5 0.21 0.28 4.5 0.3 0.34 4.5 0.46 0.47 5.25 0.17 0.17 5.25
FNN-LTO -0.32 -0.31 2.0 0.03 0.02 2.12 0.05 0.01 3.75 0.4 0.42 2.25 0.21 0.19 2.62

FNN-CONCAT 0.86 0.45 4.38 0.21 0.27 4.5 0.06 0.02 2.88 0.43 0.46 3.5 0.19 0.19 3.0
FNN-LCONCAT -0.57 -0.66 1.0 0.03 0.02 1.62 -0.99 -0.69 2.12 0.31 0.35 1.75 0.26 0.23 1.38

FNN-LE 0.87 0.53 4.25 0.21 0.29 3.75 0.27 0.31 4.12 0.46 0.47 4.25 0.17 0.16 4.62
FNN-LEWL 0.95 0.41 4.88 0.21 0.29 4.5 0.14 0.12 3.62 0.45 0.46 4.0 0.18 0.18 4.12

MLP/MC-TO 0.11 0.22 6.0 0.16 0.16 6.38 0.36 0.33 6.75 0.41 0.4 6.75 0.2 0.18 7.25
MLP/MC-LTO -0.16 -0.14 4.0 0.09 0.06 1.88 0.44 0.25 6.75 0.39 0.42 6.0 0.21 0.18 6.0

MLP/MC-CONCAT 0.0 0.06 4.88 0.16 0.13 5.62 -0.16 -0.26 2.62 0.33 0.34 3.38 0.28 0.29 3.12
MLP/MC-LCONCAT -0.34 -0.28 2.25 0.09 0.07 2.0 -0.19 -0.42 3.25 0.29 0.28 2.38 0.28 0.28 2.88

MLP/MC-TEM 0.01 -0.01 5.5 0.15 0.13 5.75 0.26 0.23 5.5 0.4 0.41 6.38 0.2 0.18 6.5
MLP/MC-TEMWL 0.29 0.36 7.25 0.18 0.17 7.62 -0.45 -0.45 2.62 0.34 0.33 2.75 0.3 0.29 2.5

MLP/MC-LE -0.2 -0.19 3.12 0.13 0.11 3.12 0.37 0.22 5.62 0.38 0.37 6.0 0.21 0.19 5.5
MLP/MC-LEWL -0.18 -0.16 3.0 0.13 0.11 3.62 -0.42 -0.35 2.88 0.29 0.26 2.38 0.3 0.28 2.25

RMTPP-TO 0.15 0.23 6.75 0.16 0.16 6.75 0.11 0.12 6.25 0.42 0.43 7.12 0.19 0.18 7.12
RMTPP-LTO -0.19 -0.19 4.62 0.06 0.05 3.25 0.09 0.07 6.25 0.42 0.42 7.0 0.19 0.18 6.38

RMTPP-CONCAT -0.05 -0.05 4.0 0.15 0.12 4.12 -1.52 -1.28 2.88 0.26 0.24 2.5 0.35 0.33 2.5
RMTPP-LCONCAT -0.42 -0.34 2.25 0.04 0.04 2.0 -1.65 -1.51 3.0 0.25 0.21 2.12 0.37 0.34 2.0

RMTPP-TEM -0.01 0.01 5.5 0.15 0.12 5.25 0.1 0.15 6.0 0.41 0.41 6.25 0.21 0.19 6.5
RMTPP-TEMWL 0.0 0.05 4.5 0.15 0.14 5.0 -2.1 -1.42 1.5 0.24 0.21 1.88 0.4 0.37 1.62

RMTPP-LE -0.14 0.01 3.88 0.15 0.13 4.75 0.12 0.14 6.25 0.4 0.41 5.62 0.21 0.19 6.0
RMTPP-LEWL -0.03 -0.0 4.5 0.15 0.13 4.88 -1.19 -1.03 3.88 0.3 0.29 3.5 0.32 0.32 3.88

SA/CM-TO 10.78 0.12 4.75 0.11 0.06 4.12 1.14 0.31 4.75 0.45 0.46 5.12 0.14 0.1 4.75
SA/CM-LTO 20.39 -0.01 3.0 0.1 0.05 2.75 0.66 0.11 4.0 0.43 0.44 2.88 0.18 0.1 2.88

SA/CM-CONCAT -0.08 -0.09 3.38 0.07 0.05 3.25 0.6 0.16 4.0 0.44 0.44 3.38 0.17 0.17 3.0
SA/CM-LCONCAT 20.53 0.05 4.12 0.12 0.06 3.62 0.61 0.08 2.5 0.43 0.45 3.25 0.18 0.11 3.0

SA/CM-LE -0.37 -0.4 2.0 0.05 0.04 2.38 0.09 0.07 3.0 0.42 0.44 3.62 0.19 0.17 4.12
SA/CM-LEWL 2.14 -0.07 3.75 0.09 0.08 4.88 -0.0 -0.01 2.75 0.41 0.44 2.75 0.2 0.16 3.25

SA/MC-TO 1.22 1.0 7.38 0.23 0.31 6.75 0.24 0.31 5.12 0.47 0.47 7.12 0.17 0.16 7.5
SA/MC-LTO 1.07 0.82 5.75 0.22 0.29 5.88 0.28 0.4 6.25 0.46 0.47 6.0 0.17 0.16 6.38

SA/MC-CONCAT 0.64 0.85 6.5 0.19 0.17 6.25 0.1 0.2 5.0 0.44 0.47 6.25 0.2 0.17 5.88
SA/MC-LCONCAT 0.53 0.74 5.12 0.19 0.16 6.25 0.16 0.23 5.38 0.43 0.47 5.25 0.2 0.17 5.5

SA/MC-TEM -0.42 -0.4 3.25 0.1 0.07 2.75 0.15 0.05 5.12 0.39 0.4 4.25 0.2 0.18 4.12
SA/MC-TEMWL -0.28 -0.26 4.25 0.11 0.08 4.25 -0.51 -0.34 1.88 0.32 0.32 1.88 0.28 0.25 1.5

SA/MC-LE -0.76 -0.52 1.62 0.07 0.04 1.5 0.11 -0.03 4.88 0.37 0.38 3.38 0.21 0.19 3.38
SA/MC-LEWL -0.48 -0.45 2.12 0.08 0.07 2.38 -0.29 -0.23 2.38 0.34 0.32 1.88 0.25 0.24 1.75
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Table 3.5: Average and median scores, as well as average ranks per decoder and
variation of history encoder, for marked datasets. Best results are highlighted
in bold. The key insight parsed from this Table is that models equipped with
a GRU encoder (i.e. GRU-∗) show overall improved performance with respect
to all metrics compared to ones equipped with a self-attention encoder (i.e.
SA-∗). Refer to text for more details, and to Section 3.3.5 for details on the
aggregation procedure.

Marked Datasets

LT PCE LM ECE F1-score

Mean Median Rank Mean Median Rank Mean Median Rank Mean Median Rank Mean Median Rank

CONS-EC 1.74 1.34 3.0 0.3 0.35 2.83 0.63 0.56 2.67 0.48 0.49 3.0 0.14 0.06 3.0
SA-EC 0.73 0.63 2.0 0.25 0.27 2.17 0.04 -0.04 2.0 0.43 0.42 2.0 0.2 0.15 1.83

GRU-EC 0.19 0.14 1.0 0.22 0.23 1.0 -0.17 -0.29 1.33 0.39 0.38 1.0 0.22 0.17 1.17

CONS-LNM -0.35 -0.44 2.83 0.02 0.02 2.33 0.58 0.43 3.0 0.48 0.49 3.0 0.14 0.06 3.0
SA-LNM -0.61 -0.68 1.83 0.02 0.02 2.17 -0.63 -0.39 1.83 0.39 0.39 1.83 0.24 0.17 1.83

GRU-LNM -0.8 -0.83 1.33 0.03 0.01 1.5 -1.11 -0.83 1.17 0.35 0.37 1.17 0.26 0.2 1.17

CONS-FNN 1.02 0.72 3.0 0.2 0.24 2.67 0.5 0.25 2.83 0.46 0.46 2.83 0.17 0.11 2.5
SA-FNN 0.78 0.53 1.83 0.19 0.23 2.0 0.05 0.06 2.17 0.45 0.45 1.83 0.18 0.11 2.0

GRU-FNN 0.52 0.13 1.17 0.18 0.21 1.33 -0.17 -0.04 1.0 0.42 0.44 1.33 0.18 0.11 1.5

CONS-MLP/MC 0.5 0.52 3.0 0.19 0.23 2.83 0.4 0.3 2.33 0.39 0.4 2.0 0.22 0.17 2.33
SA-MLP/MC 0.13 0.13 2.0 0.17 0.21 2.0 0.04 -0.02 2.33 0.38 0.39 2.67 0.22 0.17 2.33

GRU-MLP/MC -0.15 -0.14 1.0 0.16 0.18 1.17 -0.03 -0.26 1.33 0.35 0.37 1.33 0.23 0.18 1.33

CONS-RMTPP 0.87 0.66 3.0 0.18 0.21 2.33 0.97 0.65 2.67 0.47 0.48 3.0 0.13 0.05 3.0
SA-RMTPP 0.13 0.17 1.83 0.17 0.19 2.17 -0.38 -0.36 2.17 0.38 0.39 1.83 0.24 0.18 1.83

GRU-RMTPP -0.15 -0.17 1.17 0.15 0.17 1.5 -0.95 -0.66 1.17 0.34 0.37 1.17 0.26 0.22 1.17

CONS-SA/CM 0.01 -0.06 3.0 0.1 0.12 2.83 0.51 0.36 2.67 0.44 0.44 2.17 0.18 0.11 2.17
SA-SA/CM -0.17 -0.2 1.83 0.08 0.08 1.83 0.12 0.09 1.5 0.44 0.44 1.83 0.18 0.11 1.17

GRU-SA/CM -0.22 -0.22 1.17 0.07 0.08 1.33 0.12 0.07 1.83 0.44 0.44 2.0 0.18 0.11 2.67

CONS-SA/MC 0.44 0.2 3.0 0.18 0.19 2.83 0.42 0.28 2.67 0.41 0.41 2.33 0.2 0.13 2.0
SA-SA/MC 0.07 0.03 1.67 0.16 0.16 1.83 -0.05 -0.16 1.5 0.39 0.41 1.67 0.19 0.12 2.33

GRU-SA/MC 0.05 -0.04 1.33 0.16 0.16 1.33 -0.1 -0.16 1.83 0.39 0.42 2.0 0.2 0.12 1.67

As a first observation, we note that LNM achieves the lowest LT , outperform-
ing all other baselines. The difference in performance with the LN decoder
further suggests that the assumption of log-normality for the distribution of
the inter-arrival times is not a sufficient inductive bias by itself and that the
additional flexibility granted by the mixture is necessary to achieve a lower
LT . Additionally, most neural baselines achieve on average a lower LT than
their parametric counterparts, indicating that high-capacity models are more
amenable to capturing complex patterns in real-world event data.

Figure 3.3 shows the evolution of λ∗(t; θ̂) and f∗(t; θ̂) between two events in
a test sequence of LastFM, for the combinations of Table 3.6 that performed
the best on LT . The greater the gap between λ∗(t; θ̂) and f∗(t; θ̂), the greater
Λ∗(t; θ̂) between two events. We observe that most neural MTPP decoders
learn to assign high probability mass to very low inter-arrival times. This
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Table 3.6: Average and median scores, and average ranks of the best combina-
tions per decoder on LT (top rows) and LM (bottom row) across all marked
datasets. Best results are highlighted in bold.

Marked Datasets

LT PCE LM ECE F1-score

Mean Median Rank Mean Median Rank Mean Median Rank Mean Median Rank Mean Median Rank

GRU-EC-LE -0.22 -0.02 7.75 0.17 0.14 9.12 -0.1 -0.03 6.5 0.39 0.41 7.0 0.21 0.18 7.38
GRU-LNM-TO -1.44 -0.93 1.5 0.02 0.01 1.88 -0.06 -0.07 6.5 0.41 0.42 6.75 0.21 0.18 7.12
GRU-LN-LEWL -0.54 -0.56 5.25 0.07 0.04 5.75 -1.56 -1.38 2.75 0.28 0.28 4.5 0.33 0.35 2.88

GRU-FNN-LCONCAT -0.6 -0.71 3.38 0.02 0.02 2.25 -1.57 -1.0 3.5 0.29 0.35 4.5 0.27 0.23 4.12
GRU-MLP/MC-LCONCAT -0.42 -0.38 5.5 0.09 0.07 6.38 -0.47 -0.47 5.62 0.26 0.26 2.88 0.28 0.28 4.38
GRU-RMTPP-LCONCAT -0.52 -0.41 4.75 0.04 0.03 4.88 -1.88 -1.99 2.38 0.22 0.15 2.88 0.4 0.35 1.62

GRU-SA/CM-LE -0.46 -0.42 6.12 0.05 0.03 3.75 0.1 0.07 7.75 0.43 0.45 8.12 0.19 0.18 8.75
GRU-SA/MC-LE -0.85 -0.55 3.88 0.08 0.05 4.88 0.08 -0.04 7.62 0.35 0.37 6.5 0.21 0.2 6.62

Hawkes 1.21 -0.15 7.62 0.11 0.1 6.5 -3.42 -1.01 4.12 0.15 0.13 2.12 0.45 0.43 2.38
Poisson 1.86 1.35 10.75 0.25 0.34 10.25 2.23 1.26 10.75 0.48 0.48 10.5 0.16 0.15 10.75

NH 1.32 1.07 9.5 0.24 0.32 10.38 0.25 0.41 8.5 0.48 0.47 10.25 0.17 0.16 10.75

GRU-EC-TEMWL 0.16 0.16 7.88 0.18 0.16 8.62 -1.42 -1.1 5.0 0.29 0.24 5.75 0.3 0.3 6.12
GRU-LNM-CONCAT -1.41 -1.0 1.12 0.02 0.01 1.62 -2.62 -1.76 2.5 0.23 0.18 3.88 0.38 0.34 3.0
GRU-LN-CONCAT -0.51 -0.57 4.25 0.07 0.04 4.88 -2.59 -1.81 3.12 0.25 0.25 4.12 0.33 0.34 4.38

GRU-FNN-LCONCAT -0.6 -0.71 2.75 0.02 0.02 2.25 -1.57 -1.0 5.25 0.29 0.35 4.88 0.27 0.23 5.12
GRU-MLP/MC-TEMWL 0.11 0.23 7.5 0.17 0.16 7.12 -0.73 -0.64 7.0 0.32 0.33 6.38 0.32 0.3 5.5

GRU-RMTPP-TEMWL + B -0.19 -0.11 5.62 0.14 0.11 5.62 -2.67 -1.85 2.38 0.2 0.16 2.88 0.42 0.42 2.62
GRU-SA/CM-LEWL -0.23 -0.23 5.5 0.08 0.07 5.12 -0.18 -0.11 8.12 0.41 0.43 8.5 0.21 0.2 8.88

GRU-SA/MC-TEMWL -0.29 -0.3 4.88 0.11 0.09 5.25 -0.55 -0.55 7.38 0.31 0.31 6.25 0.28 0.26 6.5

allows them to reach lower LT than their parametric counterparts on datasets
where events are highly clustered, such as LastFM.

With respect to the mark prediction task, we find that the Hawkes decoder
achieves on average the best results, outperforming all baselines in terms of LM ,
ECE, and F1-score. While the Hawkes decoder did not perform favorably on
time-related metrics, its superiority compared to more complex models on the
mark prediction task is rather intriguing. Specifically, the results of Table C.5
show that the Hawkes decoder significantly outperforms other neural baselines
on mark related metrics for LastFM, Wikipedia, and Github. Likewise, the
RMTPP and LN(M) decoders also show competitive performance on these
metrics, despite their simplifying assumption of marks being independent of
the time given the history of the process. The overall superiority of parametric
and semi-parametric architectures on the mark prediction task suggests that
non-parametric decoders may actually suffer from their high flexibility, making
them hard to optimize in practice. Nonetheless, although LN, LNM, RMTPP,
and Hawkes do better than their non-parametric counterparts, we find that all
decoders perform rather poorly on the mark prediction task.

Figure 3.4 shows the CD diagrams between the average ranks of all decoders
at the α = 0.1 significance level, on each metric separately. The lower the rank
(further to the left on the top horizontal axis), the better the performance of
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Figure 3.3: Evolution of λ∗(t; θ̂) and f∗(t; θ̂) between two events on the
LastFM dataset. Arrival times correspond to 2.0975 and 2.0986, respectively.

a decoder with respect to that metric, while a bold black line groups decoders
that are not significantly different from one another. As can be seen, there
are clear differences between the models’ average ranks (e.g. LNM on LT

for marked datasets). The fact that Holm’s posthoc tests do not allow us to
conclude statistically significant differences between them can be explained by
a large number of pairwise comparisons compared to the few available samples
(datasets), which results in high adjusted p-values.

On the calibration of MTPP models. Figure 3.5 shows the reliability
diagrams for the time predictive predictive distributions associated with the
combinations presented in Table 3.6, averaged over all marked datasets. We ob-
serve a good probabilistic calibration for the LNM, FNN, MLP/MC, RMTPP,
and SA/CM decoders, as demonstrated by their curves closely matching the
diagonal. On the other hand, the other decoders present higher degrees of
miscalibration. More precisely, their empirical curve lays systematically above
the diagonal line, which suggests that the quantiles of the time predictive dis-
tributions are biased upwards, i.e. a larger proportion than p of observations
fell below the corresponding predictive quantile at level p.
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(a) LT (b) PCE

(c) LM (d) ECE

(e) F1-score

Figure 3.4: CD diagrams per metric at the α = 0.05 significance level for all
decoders on marked datasets. The decoders’ average ranks are displayed on
top, and a bold line joins the decoders’ variations that are not statistically
different.

Figure 3.6 shows the reliability diagrams for the mark predictive distributions
associated with the best-performing combinations (in terms of LM ) in Table
3.6, aggregated over all marked datasets. Overall, we observe that the cali-
bration of these decoders mirrors their performance on LM and F1-scores, i.e.
better values with respect to these metrics correspond to better calibration.
Indeed, the Hawkes decoder is the best-calibrated model among our baselines,
followed by RMTPP and LNM. Nonetheless, we note that all decoders are usu-
ally over-confident in their predictions, as shown by the bin accuracies falling
systematically below the diagonal line.

Analysis of the history size. When training a neural MTPP model, it
is typically assumed that the complete history Ht, spanning from the first
to the last observed event, contains valuable information about the future
dynamics of the process. However, in certain real-world scenarios, it may be
more appropriate to explicitly assume a q-order Markovian property, where
an event ei is only influenced by q of the last i − 1 events preceding ei, i.e.
f∗(ei|Ht) = f∗(ei|ei−q−1, ..., ei−1).
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Figure 3.5: Reliability diagrams of the time predictive distributions for the
models that performed best on LT (top rows of Table 3.6), averaged over
all marked datasets. The bold black line corresponds to perfect probabilistic
calibration.

When comparing the impact of different encoders, we have found that effec-
tively encoding the process history is crucial for modeling the joint distribution
of inter-arrival times and marks. However, it does not provide insights into the
number of past events that truly contain useful information. To address this
question, we train models using variations of both the GRU and self-attention
history encoders. These encoders generate a history embedding hi for event
ei from Hq

ti
= {(tj , kj) ∈ H|tj < ti, i − q ≤ j < i}, which includes at most q

events preceding ei.

In Figure 3.7, we show the evolution of LT and LM (when relevant), by vary-
ing the maximal history size q to which the history encoder has access during
training. As a brief aside, note that while LM can only take positive val-
ues due to p∗(k|τ ; θ̂) ∈ [0, 1], LT is free to take negative or positive values.
This is because the PDF f∗(τ ; θ̂) is not constrained to be smaller than 1. We
report our observations for the GRU encoder operating on this fixed-size win-
dow (GRU-Fixed), but similar results were obtained for a fixed self-attentive
encoder (SA-Fixed). Compared to a completely masked history, which is equiv-
alent to training the model with the CONS encoder (i.e. q = 0), we observe
a substantial improvement in LT for most models when only the last event is
made available to the encoder. However, on most datasets, additional context
does not yield significant improvement, with an LT that often quickly stabilizes
as q increases.

On the one hand, this finding suggests that real-world processes possess a
Markovian property and that going far in history does not bring valuable ad-
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Figure 3.6: Reliability diagrams of the mark predictive distributions for various
decoders, averaged over all marked datasets. Top rows depict a decoder’s
average accuracy per bin, while bottom rows show the average proportion of
samples falling per bin. Bins aligning with the bold black line corresponds to
perfect calibration. Error bars refer to the standard error.

ditional insight regarding the arrival time of the next event. On the other
hand, it could also indicate that RNNs (and self-attention mechanisms) do not
fully capture long-term dependencies among event occurrences in the context
of MTPPs, warranting future research on better alternatives to encode the his-
tory. In essence, masking part of the history translates to a reduction in model
complexity, making them effectively less prone to overfitting on the training
sequences. Additionally, the EC decoder appears to be more impacted on LT

as q increases than other baselines. Considering that this decoder can only
leverage the history embedding to define time-independent marked intensities,
we hypothesize that optimization may force the encoder to extract as much
information as possible from the patterns of previous marks occurrences.
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(a) From left to right: LastFM and MOOC.
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(b) From left to right: Github and Wikipedia.

0 1 3 5 8 10 F
| t|

350

300

250

200

150

100

T

0 1 3 5 8 10 F
| t|

120

140

160

180

200

220

M

0 1 3 5 8 10 F
| t|

250

200

150

100

50

T

0 1 3 5 8 10 F
| t|

250

300

350

400

450

500

M

(c) From left to right: Taxi, Twitter, Reddit Submissions, and Reddit Comments.
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(d) From left to right: PUBG, Yelp Toronto, Yelp Mississauga, and Yelp airport.
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Figure 3.7: Evolution of models’ performance with respect to LT , and LM

(when available), as a function of the maximal number of events used to con-
struct hi when using a GRU operating on a fixed-size window. ’F’ refers to
the unconstrained GRU, i.e. the encoder having access to the full history.
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(a) Marked datasets.
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(b) Unmarked datasets.
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Figure 3.8: Performance of LNM, EC, Hawkes (H), and SA/CM on LT and
LM for each dataset.

A similar statement can be made for LM . However, we find continuous im-
provement as q increases for FNN, RMTPP, and LNM on Github and LastFM.
As LNM and RMTPP parametrize the PMF of marks solely from hi, they also
require expressive representations of the history to perform well with respect
to LM .

On the adequacy of MTPP datasets. A concern that is rarely addressed
in the neural MTPP literature relates to the validity of the current benchmark
datasets for neural MTPP models. Enguehard et al. (2020) raised some con-
cerns regarding MIMIC2 and Stack Overflow as the simple time-independent
EC decoder yielded competitive performance with more complex baselines on
such datasets. Figure 3.8 reports both LT and LM (when available) for LNM,
EC, Hawkes and FNN decoders7 on all real-world datasets. We indeed observe
that the EC decoder is competitive with LNM on LT and LM for MIMIC2 and
Stack Overflow, supporting their recommendation that future research should
show a certain degree of caution when benchmarking new methods on these
datasets. We further express additional concerns about Taxi, Reddit Subs
and Reddit Ask Comments, Yelp Toronto, and Yelp Mississauga, on which
all decoders achieve comparable performance. All remaining datasets appear
to be appropriate benchmarks for evaluating neural MTPP models, as higher
variability is observed in the results.

7Here also, we employed the combinations on the top row of Table 3.6 to compute LT on
marked datasets, and the combinations of Table C.3 to compute LT on unmarked datasets.
LM was computed using the combinations on the bottom row of Table 3.6.
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Computational times. Panels (a), (b), (c), and (d) of Figure 3.9 show the
evolutions of the computational time in seconds (s) and maximum GPU al-
located memory in Megabytes (MB) for a single forward and backward pass
on a sequence for various decoders as a function of sequence length nl. All
models are trained using a NVIDIA RTX A4000 GPU, and the results are av-
eraged over 50 runs. Additionally, when applicable, the number of parameters
is controlled such that each model is equipped with a comparable capacity.
On panel (a), we observe that the time complexity of most decoders equipped
with a GRU history encoder is linear in nl, while the time complexity of both
SA/CM and SA/MC decoders evolves quadratically. This aligns with the the-
oretical complexity of GRU and self-attention mechanisms, that respectively
require O(nl) and O(n2l ) operations during training (Goodfellow et al., 2016;
Vaswani et al., 2017). Panel (b) further illustrates that the use of a self-
attentive history encoder leads to quadratic time complexity as a function of
nl. Moreover, while the time complexity of the Hawkes and NH models in pan-
els (c) and (d) appear both linear, we find that these models are in practice
very expensive to train for large nl, as shown by the large scale differences in
the y-axis compared to panels (a) and (b).

Regarding the evolution of the space complexity for panels (a) to (d), we
note that the allocated GPU memory increases quadratically as a function
of nl for most models, at the exception of the Hawkes decoder which space
complexity remains linear. We now turn our analysis to panel (e), which shows
the evolution of the time and space complexity to perform a single forward
and backward pass on a fixed-length sequence of 1000 events for increasing
number of marks K. We note that while the number of marks does not have a
significant impact on computational time, it leads to non negligible increases
in allocated GPU memory. Finally, panel (f) presents the evolution of these
metrics as a function of Monte Carlo samples nv used in the evaluation of the
compensator in (3.21) for the SA/MC and MLP/MC decoders. As observed,
both computational time and GPU memory usage can grow substantially with
increasing nv, particularly for the SA/MC decoder. Hence, using MC decoders
on datasets that contain long sequences and a high number of marks can quickly
lead to time and memory overheads.

On Table 3.7, we report the computing time (in seconds) for each decoder
averaged over 10 epochs for a single forward and backward pass on the training
sequences of the MOOC dataset (standard deviation is given in parenthesis).
All decoders were equipped with the GRU history encoder and the TEMWL
event encoding, when relevant (i.e. not for Hawkes, Poisson, and NH), with
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similar hyper-parameters configurations. Additionally, the batch size was 32,
and the models were trained on an NVIDIA RTX A4000. With respect to the
results on both the time and mark prediction tasks, we find LNM to provide
the best performance/runtime trade-off among all the decoders considered in
the study. On the other hand, the NH decoder is extremely expensive to train,
while generally performing worse than other neural baselines.

3.5. Conclusion

In this chapter, we conducted a large-scale experimental study of state-of-
the-art neural MTPP models using multiple real-world and synthetic event
sequence datasets in a carefully designed setup. Specifically, we studied the
influence of major architectural components on predictive accuracy and high-
lighted that some specific combinations of architectural components can lead
to significant improvements for both time and mark prediction tasks.

Among others, our results demonstrated that RNN encoders are in general bet-
ter suited to capture the history of a process compared to their self-attentive
counterparts. In this context, we found that encoders relying on a self-attention
mechanism would typically require vectorial representations of arrival times
and marks to achieve good performance, whereas RNN encoders are gener-
ally stable to the choice of event encoding mechanism. Additionally, we found
that neural MTPP baselines would in general outperform their classical coun-
terparts on the time prediction tasks, which aligns with expectations given
their enhanced flexibility. Nonetheless, we noticed that neural MTPP models
achieve in general unsatisfactory predictive accuracy on the mark prediction
task, sometimes being outperformed by simpler classical models. This un-
derscores the difficulty in optimizing these models in practice despite their
inherent flexibility.

Moreover, we assessed the rarely discussed topic of probabilistic calibration
for neural MTPP models. Our experiments highlighted that mark predictive
distributions are often poorly calibrated, despite good calibration for the time
predictive distributions. Our experiments also demonstrated that solely en-
coding a few of the last observed events yielded comparable performance to
encoding the complete history for most datasets and decoders. Finally, we con-
firmed the concerns of previous research regarding the commonly used datasets
for benchmarking neural MTPP models and raised concerns about others. We
believe our findings will bring valuable insights to the neural MTPP research
community, and we hope that they will inspire future work.
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Figure 3.9: Evolution of the time in seconds (s) and maximum GPU memory
allocated in megabytes (MB) for a single forward and backward pass on a
sequence for different MTPP models by varying the number of events nl (panels
(a), (b), (c), and (d)), the number of marks K (panel (e)), and the number of
Monte Carlo samples nv in the evaluation of (3.21) (panel (f)).

Table 3.7: Average execution time in seconds per decoder for a single forward
and backward pass on the MOOC dataset.

EC LNM MLP/MC FNN RMTPP SA/CM SA/MC Hawkes Poisson NH

1.21 (0.06) 1.51 (0.06) 1.66 (0.07) 2.39 (0.07) 1.32 (0.07) 4.01 (0.08) 2.47 (0.06) 17.11 (0.27) 0.66 (0.01) 234.13 (1.36)
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CHAPTER 4

Preventing Conflicting Gradients in
Neural MTPP Models
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The large-scale experimental study conducted in Chapter 3 offered a deeper
understanding of the behavior of modern neural MTPP models, highlight-
ing some of their strengths and weaknesses across a wide range of real-world
scenarios. In particular, one of the key insights derived from our extensive
set of experiments revealed some limitations of these neural parametrizations.
Specifically, while neural MTPP models generally perform well on the time
prediction task, their effectiveness on the mark prediction task appears sub-
optimal. Accordingly, this limitation of neural MTPP models has also been
reported in related experimental studies (Lin et al., 2021).

Addressing this challenge requires first and foremost to identify the underlying
causes in neural MTPP modeling that impede performance in capturing the
complex dynamics of mark occurrences. For some MTPP instances, this can
be partly imputed to the set of assumptions on which a given model explicitly
relies. For instance, consider LNM (Shchur et al., 2020a) and RMTPP (Du
et al., 2016) introduced in Section 3.1.3. Both of these models explicitly en-
force independence of arrival times and marks given the history of the process.
However, in a variety of real-world scenarios, we may reasonably assume that
the arrival times and marks of events often exhibit complex inter-dependencies,
which cannot be captured by LNM and RMTPP. This intuition has been pre-
viously confirmed in the context of EHR (Enguehard et al., 2020)—times and
types of medical conditions are correlated, requiring adequate modeling of their
dependencies. However, most neural MTPP models do not assume conditional
independence of arrival-times and marks, indicating that the cause of poor
mark predictive accuracy also stems from a different source.

In this chapter, we argue that learning a neural MTPP model can be inter-
preted as a two-task learning problem, where both tasks share a common set of
parameters and are optimized jointly. Specifically, one task focuses on learn-
ing the distribution of the next event’s arrival time conditional on historical
events. The other task involves learning the distribution of the categorical
mark conditional on both the event’s arrival time and the historical events.
As mentioned previously, we identify these tasks as the time and mark predic-
tion tasks, respectively. While parameter sharing between tasks can sometimes
enhance training efficiency (Standley et al., 2020), it may also result in perfor-
mance degradation when compared to training each task separately. A major
challenge in the simultaneous optimization of multi-task objectives is the is-
sue of conflicting gradients (Liu et al., 2021b). This term describes situations
where task-specific gradients point in opposite directions. When such conflicts
arise, gradient updates tend to favor tasks with larger gradient magnitudes,
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thus hindering the learning process of other concurrent tasks and adversely af-
fecting their performance. Although the phenomenon of conflicting gradients
has been studied in various fields (Chen et al., 2018, 2020; Yu et al., 2020;
Shi et al., 2023), its impact on the training of neural MTPP models remains
unexplored.

We propose to address this challenge with the following contributions:

• We demonstrate that conflicting gradients frequently occur during the
training of neural MTPP models. Furthermore, we show that such con-
flicts can significantly degrade a model’s predictive performance on the
time and mark prediction tasks.

• To prevent the issue of conflicting gradients, we introduce novel
parametrizations for existing neural MTPP models, allowing for separate
modeling and training of the time and mark prediction tasks. Inspired
by the success of (Shi et al., 2023), our framework allows to prevent
gradient conflicts from the root while maintaining the flexibility of the
original parametrizations.

• We want to emphasize that our approach to disjoint parametrizations
does not assume the independence of arrival times and marks. Un-
like prior studies that assumed conditional independence (Shchur et al.,
2020a; Du et al., 2016), we propose a simple yet effective parametrization
for the mark conditional distribution that relaxes this assumption.

• Through a series of experiments with real-world event sequence datasets,
we show the advantages of our framework over the original model formu-
lations. Specifically, our framework effectively prevents the emergence
of conflicting gradients during training, thereby enhancing the predictive
accuracy of the models.

4.1. Conflicting Gradients in Two-Task Learning for
Neural MTPP Models

Recall from the previous chapter that a neural MTPP model consists of three
main components: (1) An event encoder that learns a representation li ∈ Rdl

for each event ei = (ti, ki) in a sequence S, (2) a history encoder that learns
a compact history embedding hi ∈ Rdh of the history Hti of event ei, and
(3) a decoder defining a function that uniquely characterizes the MTPP (e.g.
λ∗k(t;θ)) from hi.
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Let f∗(τ, k;θ), λ∗k(t;θ), or Λ∗
k(t;θ) be a valid model of f∗(τ, k), where the

set of trainable parameters θ lies within the parameter space Θ. To train this
model, we use a dataset Strain = {S1, ...,SL}, where each sequence Sl comprises
nl events with arrival times observed within the interval [0, T ] and l = 1, ..., L.
As previously, the training objective is the average sequence NLL, optimized
using mini-batch stochastic gradient descent (Ruder, 2017):

L(θ;Strain) = − 1

L

L∑
l=1

[
nl∑
i=1

log f∗(τl,i, kl,i;θ)− log(1− F ∗(T ;θ))

]
, (4.1)

Consider the factorization of f∗(τl,i, kl,i;θ) into f∗(τl,i;θ) and p∗(kl,i|τl,i;θ),
where f∗(τl,i, kl,i;θ) = f∗(τl,i;θ) · p∗(kl,i|τl,i;θ). Substituting this decomposi-
tion into the NLL in (4.1) and rearranging terms, we obtain:

L(θ;Strain) =− 1

L

L∑
l=1

[
nl∑
i=1

log f∗(τl,i;θ)− log(1− F ∗(T ;θ))

]
︸ ︷︷ ︸

LT (θ,Strain)

− 1

L

L∑
l=1

nl∑
i=1

log p∗(kl,i|τl,i;θ)︸ ︷︷ ︸
LM (θ,Strain)

. (4.2)

This shows that the total objective function L(θ;Strain) consists of two sub-
objectives: LT (θ;Strain) and LM (θ;Strain), revealing that learning an MTPP
model can be interpreted as a two-task learning problem. The first objective,
LT (θ;Strain), relates to modeling the time predictive distribution f∗(τ ;θ),
which we refer to as the time prediction task TT . The second objective,
LM (θ;Strain), concerns modeling the conditional mark predictive distribution
p∗(k|τ ;θ), which we call the mark prediction task TM .

Moreover, recall from Section 2.1.3 that a (strictly) consistent scoring rule for
learning (neural) MTPP models can take the general form (Brehmer et al.,
2021):

L(θ;Strain) =− 1

L

L∑
l=1

[
nl∑
i=1

Sf
l,i(f

∗(τl,i;θ)) +
n∑

i=1

Sp
l,i(p

∗(kl,i|τl,i;θ))

− SF
l (1− F ∗(T ;θ))

]
, (4.3)
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where Sf
l,i, S

F
l , and Sp

l,i are (strictly) consistent scoring rules for f∗(τ ;θ),
1− F ∗(T ;θ), and p∗(k|τ ;θ), respectively. Rearranging the terms of (4.3),
we find that this expression can also be interpreted as a two-tasks learning
objective:

L(θ;Strain) =− 1

L

L∑
l=1

[
nl∑
i=1

Sf
l,i(f

∗(τl,i;θ))− SF
l (1− F ∗(T ;θ))

]
︸ ︷︷ ︸

LT (θ;Strain)

+− 1

L

L∑
l=1

nl∑
i=1

Sp
l,i(p

∗(kl,i|τl,i;θ))︸ ︷︷ ︸
LM (θ;Strain)

. (4.4)

Although the following discussion could be extended to a broader range of
scoring rules than the LogScore for Sf

l,i, S
F
l and Sp

l,i, we narrow our analysis to
the objective in (4.2), as the NLL has been widely established as the standard
objective for training neural MTPP models (Shchur et al., 2021b).

Let θs be the value of θ at training iteration s. Assuming that LT (θs) and
LM (θs) are differentiable, let gT = ∇θLT (θs) and gM = ∇θLM (θs) denote
the gradients of tasks TT and TM , respectively, with respect to the shared
parameters θ1. As discussed in (Shi et al., 2023), a small update step during
optimization for θ in the direction of negative gT is

θs+1 = θs − ηgT , (4.5)

where η > 0 is the learning rate. Consider the first order Taylor approximation
of LM around θs, i.e.

LM

(
θs+1

)
= LM (θs) +

(
θs+1 − θs

)⊺
gM + o(η). (4.6)

where o(η) is an error term that vanishes quicker than η. Replacing θs+1 in this
expression with (4.5), the impact that an update in the direction of negative
gT has on the loss of task TM is measured as

LM

(
θs+1

)
− LM (θs) = (θs − ηgT − θs)⊺ gM + o(η), (4.7)

= −ηgT · gM + o(η), (4.8)

where gT · gM is the dot product between gT and gM . Consequently, when
gT and gM are pointing in opposite directions, i.e. gT · gM < 0, an update

1We explicitly omit the dependency of LT and LM on Strain to simplify notations.
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step in the direction of negative gT for θ will increase the loss for task TM ,
provided that η is sufficiently small. Similarly, the loss of task TT will increase
if an update step is taken in the direction of negative gM . Such conflicting
gradients can be formally defined as follows.

Definition 1 (Conflicting gradients (Shi et al., 2023)). Let ϕTM ∈ [0, 2π] be
the angle between the gradients gT and gM . They are said to be conflicting
with each other if cos ϕTM < 0.

Figure 4.1: Conflicting gradi-
ents

The smaller the value of cos ϕTM ∈ [−1, 0],
the more severe the conflict between the gra-
dients. Figure (4.1) illustrates these conflict-
ing gradients. Ideally, we want the gradients
to align during optimization (i.e. cos ϕTM >
0) to encourage positive reinforcement be-
tween the two tasks, or to be simply orthog-
onal (i.e. cos ϕTM = 0). Conflicting gra-
dients, especially those with significant dif-
ferences in magnitude, pose substantial chal-
lenges during the optimization of multi-task learning objectives (Yu et al.,
2020). Specifically, if gT and gM conflict, the update step for θ will likely
be dominated by the gradient of whichever task—gT or gM—has the greater
magnitude, thereby disadvantaging the other task. The degree of similarity be-
tween the magnitudes of these two gradients can be quantified using a metric
known as gradient magnitude similarity, defined as follows:

Definition 2 (Gradient Magnitude Similarity (GMS) (Yu et al., 2020)).
The gradient magnitude similarity between gT and gM is defined as
GMS = 2× ||gT ||2×||gM ||2

||gT ||22+||gM ||22
, where || · ||2 is the l2-norm.

A GMS value close to 1 indicates that the magnitudes of gT and gM are similar,
while a GMS value close to 0 suggests a significant difference between them.
Ideally, we aim to minimize the number of conflicting gradients and maintain
a GMS close to 1 to ensure balanced learning across the two tasks. However,
a low GMS value among conflicting gradients does not specify which task is
being prioritized. Therefore, we introduce the time priority index to address
this issue, which is defined as follows:

Definition 3 (Time Priority Index (TPI)). The time priority index between
conflicting gradients gT and gM is defined as TPI = 1 (||gT ||2 > ||gM ||2) s.t.
cos ϕTM < 0, where 1(·) is the indicator function.
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If gT and gM are conflicting and optimization prioritizes task TT , then the
TPI takes the value 1. Conversely, if task TM is prioritized, the TPI takes the
value 0.

Do gradients conflict in neural MTPP models? To explore this question,
we perform a preliminary experiment with common neural MTPP baselines
that either learn f∗(t, k;θ), λ∗k(t;θ), or Λ∗

k(t;θ): THP (Zuo et al., 2020), SAHP
(Zhang et al., 2020), FNN (Omi et al., 2019), LNM (Shchur et al., 2020a), and
RMTPP (Du et al., 2016). We aim to determine whether conflicting gradients
occur during their training. For this purpose, each model is trained to minimize
the NLL defined in (4.2) using sequences from two real-world datasets: LastFM
(Hidasi & Tikk, 2012) and MOOC (Kumar et al., 2019). For optimization, we
rely on the Adam optimizer (Kingma & Ba, 2014) used by default in neural
MTPP training with learning rate α = 10−3. At every gradient update, we
calculate the gradients gT and gM with respect to the shared parameters θ2,
recording values of cos ϕTM , GMS, and TPI. Figure 4.2 shows the distribution
of cos ϕTM across all S training iterations, along with the average values of
GMS and TPI, and the proportion of conflicting gradients (CG), computed as

CG =

∑S
s=1 1 (cos ϕsTM < 0)∑S

s=1 cos ϕsTM

, (4.9)

where ϕsTM refers to the angle between gs
T and gs

M at training iteration s.
Gradients that are conflicting during training correspond to the red bars. We
observe that some models, such as THP and SAHP on MOOC, frequently
exhibit conflicting gradients during training, as indicated by a high value of CG.
Conversely, while other models show a more balanced proportion of conflicting
gradients, these are generally characterized by low GMS values, which may
potentially impair performance on the task with the lowest magnitude gradient.
In this context, the data indicates that optimization generally tends to favor
TT during optimization on MOOC, LastFM and Github, as suggested by an
average TPI greater than 0.5. Conversely, optimization tends to favor TM
on Stack Overflow and Reddit. In Section 4.4, our experiments show that the
combined influence of a high proportion of conflicts and low GMS values during
training can significantly deteriorate model performance on the time and mark
prediction tasks.

2In practice, conflicts are computed layer-wise for each layer of the model (e.g the weights
W of a fully-connected layer).
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Figure 4.2: Distribution of cos ϕTM during training for THP, SAHP, FNN,
RMTPP, and LNM on all datasets. CG refers to the proportion of cos ϕTM < 0
observed during training.The distribution is obtained by pooling the values of
ϕTM over 5 training runs, and gradients that are conflicting correspond to the
red bars.
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4.2. Related Work

Neural MTPP models. To address the limitations of simple parametric
MTPP models (Hawkes, 1971; Isham & Westcott, 1979), prior studies fo-
cused on designing more flexible approaches by leveraging recent advances
in deep learning techniques. Based on the parametrization chosen, these neu-
ral MTPP models can be generally classified along three main axis: density-
based, intensity-based, and compensator-based approaches. Intensity-based
approaches propose to model the trajectories of future arrival-times and marks
by parametrizing the marked intensities λ∗k(t). In this line of work, past event
occurrences are usually encoded into a history representation using RNNs (Du
et al., 2016; Mei & Eisner, 2017; Guo et al., 2018b; Türkmen et al., 2019;
Biloš et al., 2019; Zhu et al., 2020) or self-attention (SA) mechanisms (Zuo
et al., 2020; Zhang et al., 2020; Zhu et al., 2021; Yang et al., 2022; Li et al.,
2023). However, parametrizations of the marked intensity functions often come
at the cost of being unable to evaluate the log-likelihood in closed-form, re-
quiring Monte Carlo integration. This consideration motivated the design of
compensator-based approaches that parametrize Λ∗

k(t) using fully-connected
neural networks Omi et al. (2019), or SA mechanisms (Enguehard et al., 2020),
from which λ∗k(t) can be retrieved through differentiation. Finally, density-
based approaches aim at directly modeling the joint density of (inter-)arrival
times and marks f∗(τ, k). Among these, different family of distributions have
been considered to model the distribution of inter-arrival times (Xiao et al.,
2017b; Lin et al., 2021). Notably Shchur et al. (2020a) relies on a mixture
of log-normal distributions to estimate f∗(τ), a model that then appeared in
subsequent works (Sharma et al., 2021; Gupta et al., 2021). However, the
original work of Shchur et al. (2020a) assumes conditional independence of
inter-arrival times and marks given the history, which is alleviated in (Wagh-
mare et al., 2022). Nonetheless, a common thread of these parametrizations
is that they explicitly enforce parameter sharing between the time and mark
prediction tasks. As we demonstrate, this often leads to the emergence of
conflicting gradient during training, generally hindering model performance.
For an overview of neural MTPP models, we refer the reader to the works of
(Shchur et al., 2021b), (Lin et al., 2022) and (Bosser & Ben Taieb, 2023a).

Conflicting gradients in multi-task learning. Diverse approaches have
been investigated in the literature to improve interactions between concurrent
tasks in multi-task learning problems, thereby boosting performance for each
task individually. In this context, a prominent line of work focuses on balanc-
ing the different tasks at hand through direct manipulation of their gradients.
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These manipulations either aim at alleviating the differences in gradient mag-
nitudes between tasks (Chen et al., 2018; Sener & Koltun, 2018; Liu et al.,
2021c), or the emergence of conflicts (Sinha et al., 2018; Maninis et al., 2019;
Yu et al., 2020; Chen et al., 2020; Wang et al., 2020; Liu et al., 2021a; Javaloy
& Valera, 2022). Alternative approaches to task balancing have been explored
based on different criteria, such as task prioritization (Guo et al., 2018a), un-
certainty (Kendall et al., 2018), or learning pace (Liu et al., 2019). Another
line of work refers to task clustering methods, which aim at identifying the
tasks that should be learned jointly (Thrun & O’Sullivan, 1996; Zamir et al.,
2018; Standley et al., 2020; Shen et al., 2021; Fifty et al., 2021). At the network
level, multi-task learning methods can be partitioned into two main groups.
Hard parameter sharing methods denotes methods that share common pa-
rameters between multiple tasks (Kokkinos, 2017; Long et al., 2017; Bragman
et al., 2019). Conversely, soft sharing methods regroups methods where each
task possess its own set of parameters, although a sharing mechanism enables
communication across tasks (Misra et al., 2016; Ruder et al., 2019; Gao et al.,
2019, 2020). Our methodology relates more to branched architecture search
approaches (Guo et al., 2020; Bruggemann et al., 2020; Shi et al., 2023), where
the aim is set on dynamically identifying which layers should or should not
be shared between tasks based on a chosen criterion, e.g. the proportion of
conflicting gradients. Specifically, Shi et al. (2023) recently showed that gra-
dient surgery approaches for multi-task learning objectives, such as GradDrop
(Chen et al., 2020), PCGrad (Yu et al., 2020), CAGrad (Liu et al., 2021a),
and MGDA (Sener & Koltun, 2018), cannot effectively reduce the occurrence
of conflicting gradients during training. Instead, they propose to address task
conflicts directly from the root by turning shared layer into task-specific layers
if they experience conflicting gradients too frequently. Inspired by their suc-
cess, we strive to parametrize the time and mark prediction tasks on disjoint set
of trainable parameters to avoid conflicts during training. We want to empha-
size that our goal is not to propose a general-purpose gradient surgery method
to mitigate the negative impact of conflicting gradients. Instead, we want to
demonstrate that conflicts can be avoided altogether during the training of
neural MTPP models by adapting their original parametrizations.
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4.3. A Framework to Prevent Conflicting Gradients
in Neural MTPP Models

Given the observations from Section 4.1, our goal is to prevent the occurrence
of conflicting gradients during the training of neural MTPP models with the
NLL objective given in (4.2). To accomplish this, we first propose in Section
4.3.1 a naive approach that leverages duplicated and disjoint instances of the
same model. Then, to avoid redundancy in model specification, we introduce
in Section 4.3.2 novel parametrizations for neural MTPP models that retain
the flexibility of the original model formulations. We finally show in Section
4.3.3 how our parametrizations enable disjoint modeling and training of the
time and mark prediction tasks.

In the previous chapter, we have seen that existing neural MTPP models gen-
erally fall into three categories based on the chosen parametrization:

1. Intensity-based approaches that model the marked intensity function
λ∗k(t;θ) (Zuo et al., 2020; Zhang et al., 2020; Mei & Eisner, 2017).

2. Density-based approaches that model the joint density f∗(t, k;θ) (Shchur
et al., 2020a).

3. Compensator-based approaches that model the marked compensator
Λ∗
k(t;θ) (Omi et al., 2019; Enguehard et al., 2020).

We denote these different approaches as joint parametrizations because they
define a function that involves both the arrival time and the mark. To en-
able disjoint modeling of the time and mark prediction tasks, we consider the
factorization of these functions into the products of two components: one in-
volving a function of the arrival-times, and the other involving the conditional
PMF of marks:

λ∗k(t;θ) = λ∗(t;θ)p∗(k|t;θ) = d

dt
[Λ∗(t;θ)] p∗(k|t;θ), (4.10)

f∗(t, k;θ) = f∗(t;θ)p∗(k|t;θ), (4.11)

Λ∗
k(t;θ) =

∫ t

ti−1

λ∗(s;θ)p∗(k|s;θ)ds, (4.12)

Similarly to (4.2), a two-task NLL objective involving the r.h.s of expressions
(4.10) and (4.12) can be derived, where task TT now consists in learning either
λ∗(t;θ) or Λ∗(t;θ). We provide the expression of these two-task NLL objectives
in Appendix D.1.
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The factorizations presented in expressions (4.10) and (4.11) show that, to
enable disjoint modeling of time and mark prediction functions, we need to
specify p∗(k|t;θM ) with parameters θM , and either f∗(t;θT ), λ∗(t;θT ), or
Λ∗(t;θT ) with parameters θT . As a simple approach, we first explore obtaining
these functions from duplicated instances of the joint parametrizations λ∗k(t;θ),
Λ∗
k(t;θ) or f∗(t, k;θ), as presented next.

4.3.1 A Simple Approach to Disjoint Parametrizations

Consider a model that parametrizes λ∗k(t;θ), such as THP (Zuo et al., 2020),
which marked intensity functions are given by

λ∗k(t;θ) = σS,k

(
wt
k

t− ti−1

ti−1
+ (wh

k)
⊺h+ bk

)
, (4.13)

where σS,k is the mark-wise softplus activation in (3.18), while wt
k ∈ R+,

wh
k ∈ Rdh , and bk ∈ R. For a query time t ≥ ti−1, the history representation

h is defined as h = ENC({e1, ..., ei−1};θh) ∈ Rdh , where ENC(· ;θh) denotes
the history encoder with parameters θh. The encoder ENC(· ;θh) is general
and encompasses any encoder architecture typically found in the neural MTPP
literature, such as recurrent neural networks (RNN) (Du et al., 2016; Shchur
et al., 2020a) or self-attention mechanisms (Zuo et al., 2020; Zhang et al.,
2020).

To obtain a disjoint parametrization of λ∗(t;θT ) and p∗(k|t;θM ), we can
parametrize two identical functions λ∗k(t;θT ) and λ∗k(t;θM ) from the same
model and for all k ∈ K, where θT and θM are disjoint set of trainable param-
eters. Using the relations in (2.9) and (2.10), we can finally derive λ∗(t;θT )
and p∗(k|t;θM ) as

λ∗(t;θT ) =

K∑
k=1

λ∗k (t;θT ) and p∗(k|t;θM ) =
λ∗k (t;θM )∑K
k=1 λ

∗
k (t;θM )

, (4.14)

effectively defining the desired disjoint parametrization. In the presence of
conflicts during training, we can show that a gradient update step for the
shared model λ∗k(t;θ) leads to higher loss compared to the duplicated model
in (4.14) with disjoint parameters θT and θM . Indeed, suppose that θ, θT and
θM are all initialized with the same θs at training iteration s ∈ N. Assuming
that LT and LM are differentiable, let

gT = ∇θLT (θs) and gM = ∇θLM (θs) . (4.15)
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Denoting ϕTM as the angle between gT and gM , we have the following corollary
of Theorem 4.1. from (Shi et al., 2023):

Corollary 2. Assume that LT and LM are differentiable, and that the learning
rate η is sufficiently small. If cos ϕTM < 0, then L({θs+1

T ,θs+1
M }) < L(θs+1).

Proof. At training iteration s ∈ N, the NLL losses for θs and {θs
T ,θ

s
M} respec-

tively write
L(θs) = LT (θ

s) + LM (θs), (4.16)

and
L({θs

T ,θ
s
M}) = LT (θ

s
T ) + LM (θs

M ). (4.17)

Let θs = θs
T = θs

M . Assuming that LT and LM are differentiable, the gradient
update steps for θs, θs

T and θs
M are

θs+1 = θs− η(gT + gM ), θs+1
T = θs− ηgT and θs+1

M = θs− ηgM , (4.18)

where η is the learning rate and

gT = ∇θLT (θs) = ∇θTLT (θs
T ) , (4.19)

gM = ∇θLM (θs) = ∇θMLM (θs
M ) , (4.20)

where we used the fact that θs = θs
T = θs

M . Let us consider the first order Tay-
lor approximations of the total loss L = LT +LM near θs+1 and {θs+1

T ,θs+1
M },

respectively:

L(θs+1) = L(θs) + (θs+1 − θs)⊺gT + (θs+1 − θs)⊺gM + o(η), (4.21)

and

L({θs+1
T ,θs+1

M }) = L(θs) + (θs+1
T − θs)⊺gT + (θs+1

M − θs)⊺gM + o(η), (4.22)

where o(η) is an error term that vanishes quicker than η. Taking the difference
between L({θs+1

T ,θs+1
M }) and L(θs+1) yields

L({θs+1
T ,θs+1

M })− L(θs+1) = (θs+1
T − θs+1)⊺gT + (θs+1

M − θs+1)⊺gM + o(η)
(4.23)

= ηg⊺
MgT + ηg⊺

TgM + o(η) (4.24)
= 2η||gT ||||gM ||cos ϕTM + o(η). (4.25)

Provided that η is sufficiently small, this difference is negative if cos ϕTM < 0,
where ϕTM is the angle between gT and gM .
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This result essentially indicates that a model trained with disjoint parameters
leads to lower loss after a gradient update if conflicts arise during training,
i.e. cos ϕTM < 0. Naturally, expression (4.14) and Corollary 2 remain valid
for models that parametrize Λ∗

k(t;θ) or f∗(τ, k;θ), as these functions can be
uniquely retrieved from λ∗k(t;θ).

4.3.2 Disjoint Parametrizations of Neural MTPP Models

In this section, we introduce an alternative approach to (4.14) to achieve
disjoint parametrizations of TT and TM . Specifically, we introduce novel
parametrizations of existing neural MTPP models that directly parametrize
p∗(k|t;θM ) and either f∗(t;θT ), λ∗(t;θT ), or Λ∗(t;θT ), thereby avoiding the
unnecessary redundancy in model specification required by the method in
(4.14).

A general approach to model the distribution of marks. Given a query
time t ≥ ti−1 and its corresponding history representation h, we propose to
define the conditional PMF of marks p∗(k|t;θM ) using the following simple
model:

p∗(k|t;θM ) = σso (W2σR (W1 [h||log(τ)] + b1)) + b2) , (4.26)

where τ = t − ti−1, σso is the softmax activation function, W1 ∈ Rd1×(dh+1),
b1 ∈ Rd1 , W2 ∈ RK×d1 , b2 ∈ RK , and || means concatenation. Here,
θM = {W1,W2, b1, b2,θh}. Despite its simplicity, this model is flexible and
capable of capturing the evolving dynamics of the mark distribution between
two events. Note that (4.26) effectively captures inter-dependencies between
arrival times and marks. Moreover, by removing log(t− ti−1) from expression
(4.26), we obtain a PMF of marks that is independent of time, given Ht. Fi-
nally, while any of the mechanisms discussed in Section 3.1.1 could be used to
encode the inter-arrival time τ , we empirically found that taking a logarith-
mic transformation would lead to the most competitive results on the mark
prediction task across all datasets.

Intensity-based parametrizations. We first consider MTPP models spec-
ified by their marked intensities, namely THP (Zuo et al., 2020) and SAHP
(Zhang et al., 2020). We propose revising the original model formulations
to directly parametrize λ∗(t;θT ), while p∗(k|t;θM ) is systematically derived
from expression (4.26). Furthermore, although RMTPP (Du et al., 2016) is
originally defined in terms of this decomposition, we extend the model to in-
corporate the dependence of marks on time.
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SAHP+. While the original model formulation parametrizes λ∗k(t;θ), we adapt
its formulation to define:

λ∗(t;θT ) = 1T [σS (µ− (η − µ)exp(−γ(t− ti−1)))] , (4.27)

where 1 ∈ RC is a vector of 1’s allowing to define the ground intensity as a
sum over C different representations. In (4.27), µ = σG(Wµh), η = σS(Wηh)
and γ = σG(Wγh) where σS and σG are respectively the softplus and GeLU
activation functions (Hendrycks & Gimpel, 2023). Wµ,Wη,Wγ ∈ RC×dh are
learnable parameters and θT = {Wµ,Wη,Wγ ,θh}.

THP+. Following a similar reasoning, the original formulation of THP is
adapted to model λ∗(t;θT ) instead of λ∗k(t;θ):

λ∗(t;θT ) = 1T
[
σS

(
wt
t− ti−1

ti−1
+Wh+ b

)]
, (4.28)

where wt ∈ RC
+, W ∈ RC×dh , b ∈ Rd1 , and θT = {W,wt, b,θh}.

RMTPP+. We retain the original definition of λ∗(t) proposed in RMTPP:

λ∗(t;θT ) = exp
(
wt(t− ti−1) +wT

hh+ b
)
, (4.29)

where wt ∈ R+, wh ∈ Rdh , b ∈ R, and θT = {wt,wh, b,θh}. A major dif-
ference between the original formulation of RMTPP and our approach lies in
p∗(k|τ ;θM ) being defined by (4.26), which alleviates the original model as-
sumption of marks being independent of time given Ht.

Density-based parametrizations. The decomposition of the joint density
in expression (4.11) has previously been considered by (Shchur et al., 2020a)
with the LogNormMix (LNM) model. However, similar to RMTPP, this model
assumes independence of marks and time, given Ht. In LNM+, we relax
this assumption by using expression (4.26) to parametrize p∗(k|t;θM ), while
maintaining a mixture of log-normal distributions for f∗(τ ;θT ):

f∗(τ ;θT ) =

M∑
m=1

p∗(m)
1

τσm
√
2π

exp
(
− (log τ − µm)2

2σ2m

)
, (4.30)

where
µm = (Wµh+ bµ)m, σm = exp(Wσh+ bσ)m, (4.31)

and
p∗(m) = σso

(
Wph+ bp

)
m
, (4.32)
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with Wp,Wµ,Wσ ∈ RM×dh and bp, bµ, bσ ∈ RM , M being the number
of mixture components. Here θT = {Wµ,Wp,Wσ, bµ, bp, bσ,θh}. Again,
parametrizing the mark distribution using (4.26) relaxes the original assump-
tion of marks being independent of time given Ht.

Compensator-based parametrizations. Integrating compensator-based
neural MTPP models into our framework requires to define Λ∗(t;θT ), this way
retrieving the decomposition in the r.h.s. of (4.10). Specifically, we extend the
improved marked FullyNN model (FNN) (Omi et al., 2019; Enguehard et al.,
2020) into FNN+, that models Λ∗(t;θT ) and p∗(k|t;θM ), instead of Λ∗

k(t;θ):

Λ∗(t;θT ) = G∗(t)−G∗(ti−1), (4.33)

G∗(t) = 1T
[
σS
(
W(σGS

(
wt(t− ti−1) +Whh+ b1

)
+ b2

)]
, (4.34)

where W ∈ RC×d1 , wt, b1 ∈ Rd1 , Wh ∈ Rd1×dh , b2 ∈ RC , and σGS is the
Gumbel-softplus activation function. Here, θT = {W,Wh,wt, b1, b2,θh}.
Similarly to the previous models, we use (4.26) to define p∗(k|t).

Training different history encoders. The different functions defined in
this section, p∗(k|τ ;θM ), f∗(τ ;θT ), λ∗(t;θT ), and Λ∗(t;θT ), share a common
set of parameters θh through a common history representation h. To enable
fully disjoint modeling and training of the time and mark predictive functions,
we define two distinct history representations:

hT = ENCT [{e1, ..., ei−1};θT,h] ∈ Rdth (4.35)

hM = ENCM [{e1, ..., ei−1};θM,h] ∈ Rdmh , (4.36)

where ENCT (· ;θT,h) and ENCM (· ;θM,h) are the time and mark history
encoders, respectively, while θT,h and θM,h represent the sets of disjoint learn-
able parameters of the two encoders. By using hT for f∗(τ ;θT ), λ∗(t;θT )
and Λ∗(t;θT ), and hM for p∗(k|τ ;θM )3, we have defined completely disjoint
parametrizations of the decompositions in (4.10) and (4.11). Using separate
history encoders further enables the model to capture information from past
event occurrences that are relevant to the time and mark prediction tasks
separately. In this chapter, without loss of generality, we compute hT and
hM by training two GRU encoders that sequentially process the set of event
representations in {e1, ..., ei−1}.

3θh is now replaced by θT,h in θT , and by θM,h in θM .
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4.3.3 Disjoint Training of the Time and Mark Prediction
Tasks.

Let us model f∗(τ ;θT ) from (4.30) and p∗(k|τ ;θM ) from (4.26), using distinct
history encoders such that θT and θM are disjoint set of trainable parameters.
By injecting these expressions in (4.2), we find that the NLL is now a sum over
two disjoint objectives LT (θT ,Strain) and LM (θM ,Strain), i.e.

L(θT ,θM ;Strain) =− 1

L

L∑
l=1

[
nl∑
i=1

log f∗(τl,i;θT )− log(1− F ∗(T ;θT ))

]
︸ ︷︷ ︸

LT (θT ,Strain)

− 1

L

L∑
l=1

nl∑
i=1

log p∗(kl,i|τl,i;θM )︸ ︷︷ ︸
LM (θM ,Strain)

, (4.37)

meaning that the associated tasks TT and TM can be learned separately. This
contrasts with previous works, such as (Shchur et al., 2020a) and (Zuo et al.,
2020), in which shared parameters between f∗ and p∗ does not allow for dis-
joint training of (4.2). In our implementation, we minimize expression (4.37)
through a single pipeline by specifying different early-stopping criteria for
LT (θT ,Strain) and LM (θT ,Strain). Note that a similar decomposition can be
obtained from any of the parametrizations presented in Sections 4.3.1 and 4.3.2.
Finally, we would like to emphasize that disjoint training of tasks TT and TM
through (4.37) does not imply independence of arrival-times and marks given
the history. In fact, in our parametrizations, this dependency remains system-
atically captured by (4.26).

4.4. Experiments

We conduct an experimental study to assess the performance of our framework
in training the time and mark prediction tasks from datasets composed of
multiple event sequences. Specifically, we explore the various novel neural
MTPP parametrizations enabled by our framework, as detailed in Section 4.3.2.
These are compared to their original parametrizations4.

4For the remainder of this paper, these models will be referred to as "base models".
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4.4.1 Experimental Setup

Datasets. We use five real-world marked event sequence datasets frequently
referenced in the neural MTPP literature: LastFM (records of people listening
to songs), MOOC (students’ actions on an online learning platform), Reddit
(users’ actions of the social platform Reddit) (Kumar et al., 2019), Github
(developers’ actions on Github) (Trivedi et al., 2019), and Stack Overflow
(badge received by users on Stack Overflow) (Du et al., 2016). For all datasets,
we follow the pre-processing steps described in Section 3.3.2, and the number
of sequences in Reddit is further reduced by 50% to reduce computational cost.
For a detailed summary and statistical descriptions of these datasets, we direct
the reader to Appendix A.

Baselines. We consider as base models THP in (4.13) (Zuo et al., 2020),
RMTPP in (3.25) and (3.26) (Du et al., 2016), FullyNN (FNN) in (3.46)
(Omi et al., 2019), LogNormMix (LNM) in (3.39) and (3.26) (Shchur et al.,
2020a). Among our baselines, we also include SAHP (Zhang et al., 2020),
which marked intensity functions are given by

λ∗k(t;θ) = σS,k (µk − (ηk − µk)exp(−γk(t− ti−1))) , (4.38)

where µk = σG (Wµh), ηk = σG (Wηh), and γk = σS,k (Wγhi) with
Wµ,Wη,Wγ ∈ RK×dh . Finally, we also consider SMURF-THP (STHP)
(Li et al., 2023), which parametrizes the ground intensity as

λ∗(t;θ) = tanh
[
w
([

Wt(t− ti−1) +Wh
]
h+ b1

)
+ b2

]
, (4.39)

and a mark PMF similarly to (4.26). In (4.39), w, b1 ∈ Rd1
+ , Wt,Wh ∈ Rd1×dh

+ ,
and b2 ∈ R+. To highlight the different components of our framework that lead
to performance gains compared to the base models, we introduce the following
two settings:

• Shared History Encoders and Disjoint Decoders. A common history em-
bedding, denoted as h is used, while the two functional terms from equa-
tions (4.10) and (4.11) are modeled separately as detailed in Section 4.3.2.
Here, the functions f∗(τ ;θT ), λ∗(t;θT ), Λ∗(t;θT ) and p∗(k|τ ;θM ) share
common parameters via h. Models trained in this setting are indicated
with a "+" sign, e.g. THP+. In this setting, note that the time and
mark prediction tasks cannot be trained independently via (4.37), and
θh will end up the same for both TT and TM after optimization.
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• Disjoint History Encoders and Disjoint Decoders. In contrast to the pre-
vious configuration, distinct history embeddings, hT for time and hM for
marks, are used to define f∗(τ ;θT ), λ∗(t;θT ), Λ∗(t;θT ), and p∗(k|τ ;θM )
separately. This separation allows for the independent training of the
time and mark prediction tasks as described in Section 4.3.3. Mod-
els trained within this setting are labeled with a "++" symbol, e.g.,
THP++.

Compared to the base models, these configurations allow us to assess the im-
pacts of (1) isolating the parameters for the decoders in the time and mark
prediction tasks, and (2) using distinct history embeddings for each task, en-
abling fully disjoint training. A graphical illustration of these configurations
is shown in Figure 4.3. We will often refer to these setups as base, base+,
and base++ throughout the text. The distinction between LNM (RMTPP)
and LNM+ (RMTPP+) stems from the modeling of the PMF of marks using
our model in (4.26), which relaxes the conditional independence assumption of
these models. Finally, we also include in our baselines the classical Hawkes
model with exponential kernels in A.1. Note that, as the Hawkes model cannot
be disentangled into distinct history encoder and decoder components, we only
train it in the base setup.

Training details. For all models, we minimize the average NLL in (4.37)5

on the training sequences using mini-batch gradient descent with the Adam
optimizer (Kingma & Ba, 2014) and a learning rate of 10−3. Although the
emergence of conflicting gradients might be affected by the choice of optimizer
and learning rate, this configuration represents a standard setup for training
neural MTPP models (Shchur et al., 2020a; Zuo et al., 2020; Zhang et al., 2020).
We plan to investigate the influence of alternative optimizers and learning rate
on conflicts in future works.

For the base models and the base+ setup, an early-stopping protocol interrupts
training if the model fails to show improvement in the total validation loss
(i.e., LT + LM ) for 50 consecutive epochs. Conversely, in the base++ setup,
two distinct early-stopping protocols are implemented for the LT and LM

terms, respectively. If one of these terms does not show improvement for 50
consecutive epochs, we freeze the parameters of the associated functions (e.g.
θT for f∗(τ ;θT )) and allow the remaining term to continue training. Training is
ultimately interrupted if both early-stopping criteria are met. In all setups, the
optimization process can last for a maximum of 500 epochs, and we revert the

5Note that for the base and base+ methods, the two terms in (4.37) are functions on
shared parameters.
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(a) Base

(b) Base+ (c) Base++

Figure 4.3: Graphical representation of the base, base+, and base++ setups.

model parameters to their state with the lowest validation loss after training.
We then evaluate the model by computing test metrics on the test sequences
of each split.

Finally, to maintain a fair comparison, we ensure that each configuration con-
trols for the number of parameters, keeping them roughly equivalent across set-
tings to confirm that any observed performance improvements are not merely
due to increased model capacity. We provide further training details in Ap-
pendix D.2.

Metrics. To evaluate the performance of the different baselines on the time
prediction task, we report the LT term in (4.37) computed over all test se-
quences. Following Chapter 3, we also quantify the (unconditional) probabilis-
tic calibration of the fitted models by computing the PCE. Finally, we evaluate
the MAE in event inter-arrival time prediction. To this end, we predict the
next τ̃ computed from the median of the time predictive distribution, i.e.

τ̃ = (F ∗)−1(0.5; θ̂T ), (4.40)

where the quantile function (F ∗)−1( · ; θ̂T ) is estimated from the inverse
transform method of Section 2.1.4 using a binary search algorithm. Similarly,
for the mark prediction task, we report the average LM term in (4.37), and
quantify the probabilistic calibration of the mark predictive distribution by
computing the ECE (Naeini et al., 2015). Additionally, by predicting the
mark of the next event as

k̃ = argmax
k∈K

p∗(k|τ ; θ̂M ), (4.41)

we can assess the quality of the point predictions by means of various classifica-
tion metrics. Specifically, we compute the accuracy@n for values of n in {1, 5},
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the MRR (Craswell, 2009), and the F1-score of mark predictions. Lower LT ,
LM , PCE and ECE is better, while higher accuracy@n, MRR and F1-score
is better. For both time and mark predictive distributions, we finally report
their reliability diagrams marginalized over all events. Refer to Sections 2.1.5
and 3.3.4 for a reminder of these different metrics.

4.4.2 Results and Discussion

We present the LT and LM metrics for the base, base+, and base++ configu-
rations across all datasets in Table 4.1. The PCE, MAE, ECE, MRR, F1-score,
and Accuracy@{1,5} metrics, which reflect the subsequent discussion, are given
in Appendix D.3.1.

Table 4.1: LT and LM results of the different setups across all datasets. The
values are computed over 3 splits, and the standard error is reported in paren-
thesis. Best results are highlighted in bold.

LM
LastFM MOOC Github Reddit Stack O.

THP 714.0 (16.5) 93.3 (1.4) 128.3 (17.3) 39.9 (1.3) 105.3 (0.7)
THP+ 695.9 (15.7) 76.9 (1.2) 120.8 (16.0) 42.7 (1.2) 103.3 (0.7)

THP++ 651.1 (18.1)70.9 (1.0)112.1 (15.4) 40.4 (1.3) 103.0 (0.7)

STHP+ 700.9 (16.6) 83.2 (1.3) 121.4 (15.8) 43.7 (1.1)104.0 (0.7)
STHP++ 696.5 (15.9)82.4 (1.4)114.7 (14.9) 46.2 (0.8) 105.6 (0.6)

SAHP 825.5 (25.6) 163.0 (2.2) 138.0 (19.1) 77.9 (4.7) 108.4 (1.0)
SAHP+ 740.0 (24.6) 73.8 (1.0) 116.8 (15.2) 43.4 (1.2) 103.3 (0.7)

SAHP++ 654.8 (17.3)71.0 (1.1)114.1 (15.2)40.5 (0.8)103.1 (0.7)

LNM 685.2 (15.8) 86.6 (1.2) 116.8 (15.2) 43.4 (1.2) 106.5 (0.7)
LNM+ 668.6 (15.8) 77.1 (1.3) 112.3 (15.1) 41.4 (1.1) 103.2 (0.7)

LNM++ 637.2 (19.4)73.8 (1.1)111.5 (15.2)40.8 (1.0)103.2 (0.7)

FNN 739.5 (25.2) 78.8 (1.3) 113.5 (15.4) 47.0 (1.4) 107.3 (0.6)
FNN+ 672.1 (17.9) 72.3 (1.1) 111.6 (15.1) 41.2 (0.9) 103.2 (0.7)

FNN++ 648.6 (16.2)71.8 (1.0)109.5 (15.0)40.1 (1.0)103.1 (0.7)

RMTPP 684.6 (15.6) 87.0 (1.2) 126.4 (18.3) 41.4 (0.9) 106.5 (0.7)
RMTPP+ 681.5 (16.3) 74.9 (1.3) 118.7 (15.4) 42.0 (1.0) 103.0 (0.7)

RMTPP++654.5 (16.7)71.4 (1.1)112.6 (15.3)40.6 (1.2) 103.1 (0.7)

Hawkes 494.5 (17.9) 114.4 (1.6) 127.1 (25.6) 40.6 (0.7) 113.5 (1.1)

LT
LastFM MOOC Github Reddit Stack O.

THP -945.1 (41.3) -135.9 (1.3) -242.5 (38.5) -72.3 (2.3) -84.0 (1.4)
THP+ -994.1 (48.8) -130.6 (1.3) -255.7 (42.0) -85.5 (2.3) -84.7 (1.4)

THP++ -1037.3 (47.0) -136.0 (2.1) -271.0 (50.8) -87.9 (2.0) -84.2 (1.4)

STHP+ -993.3 (44.2) -128.2 (1.0) -208.9 (32.2) -76.6 (2.1) -83.6 (1.4)
STHP++ -1014.9 (42.1) -132.9 (1.8) -237.0 (39.3) -78.2 (2.1) -83.3 (1.4)

SAHP -1263.8 (57.9) -266.0 (3.5) -346.5 (57.4) -72.9 (1.8) -89.7 (1.4)
SAHP+ -1320.4 (58.4) -288.8 (3.5) -358.1 (57.6) -94.8 (2.3) -89.9 (1.4)

SAHP++ -1320.0 (60.5) -293.8 (3.6) -366.0 (59.3) -95.4 (2.1) -77.4 (1.2)

LNM -1326.3 (55.8) -310.0 (3.8) -380.4 (59.8) -96.4 (2.0) -91.0 (1.4)
LNM+ -1320.4 (60.5) -310.6 (3.7) -378.7 (59.4) -96.4 (2.0) -91.1 (1.3)

LNM++ -1334.7 (58.5) -307.6 (3.9) -381.2 (59.9) -96.3 (2.2) -90.5 (1.4)

FNN -1276.2 (58.6) -280.9 (3.2) -363.1 (57.2) -75.3 (2.5) -81.2 (1.3)
FNN+ -1324.6 (59.6) -302.2 (3.6) -364.5 (57.0) -94.4 (2.1) -90.0 (1.8)

FNN++ -1324.2 (58.1) -300.9 (3.7) -365.0 (56.7) -96.1 (2.2) -88.9 (1.4)

RMTPP -1052.9 (46.0) -178.6 (1.8) -268.0 (54.3) -88.0 (2.2) -83.3 (1.4)
RMTPP+ -1040.7 (45.8) -187.8 (3.1) -272.2 (49.0) -87.9 (2.0) -83.4 (1.4)

RMTPP++-1071.1 (50.3) -182.2 (1.9) -287.2 (52.6) -86.6 (2.0) -82.9 (1.4)

Hawkes -1166.3 (64.3) -204.7 (5.4) -341.2 (89.0) -75.9 (3.1) -81.1 (2.0)

Distinct decoders mitigate gradient conflicts. Based on the LT and
LM metrics, we note a consistent improvement when moving from the base to
the base+ setting for THP, SAHP, and FNN. This underscores the benefits of
using two distinct decoders for the time and mark prediction tasks with base+,
leading to improved predictive accuracy compared to the base models. Figure
4.4 shows the distribution of cos ϕTM during training for THP, SAHP and
FNN for both base and base+ settings on all datasets, along with the average
GMS and TPI for conflicting gradients. We would like too emphasize that both
base and base+ share the same encoder architecture, which allows for a direct
comparison of the distribution of cos ϕTM between the two settings during
training. Appendix D.3.3 provides detailed visualizations for the remaining
baselines.
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Figure 4.4: Distribution of cos ϕTM during training at the encoder (ENC)
and decoder (DEC) heads for THP, SAHP and FNN in the base and base+
setups. "B" and "+" refer to the base and base+ models, respectively, and
the distribution is obtained by pooling the values of ϕTM over 5 training runs.
As the decoders are disjoint in the base+ setting, note that cos ϕTM is not
defined.

With the base model, a significant proportion of severe conflicts (as indicated
by cos ϕTM in [-1, -0.5]) is often observed for the shared parameters of both
encoder and decoder heads, typically with low GMS values. Additionally, with
the base model, the TPI values suggest that these conflicting gradients at the
encoder heads generally favor TT (i.e., TPI > 0.5). In contrast, base+ inher-
ently prevents conflicts at the decoder by separating the parameters for each
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task. Moreover, during training with base+, there is a noticeable reduction
in the severity of conflicting gradients for the shared encoder parameters, as
evidenced by a more concentrated distribution of cos ϕTM around 0. The TPI
values further indicate that base+ generally achieves a more balanced training
between both tasks, which further contributes to enhancing their individual
performance. While we note that the GMS values do not consistently improve
between the base and base+ settings, improvements with respect to LT and
LM suggest that this effect is offset by a reduction in conflicts during training.

In addition, while LNM and RMTPP already avoid conflicts at the decoder
in their base settings by decomposing the parameters, explicitly modeling the
dependency of marks on time with base+ further enhances mark prediction
performance. Finally, while the Hawkes decoder is generally outperformed on
the time and mark prediction tasks by neural models trained in the base+ and
base++ setups, we note that it still achieves top performance on the LM metric
on LastFM. Events in LastFM are usually highly clustered per mark, and we
believe that the assumptions of strictly positive and additive influence of past
events in the Hawkes model makes it more prone to capture such dynamics.

Disjoint training enhances mark predictive accuracy. Return-
ing to Table 4.1, moving from the base+ to the base++ setting often
leads to improvements in the LM metric for most baselines, while the
LT metric generally remains comparable between the two configurations.

Figure 4.5: Validation curves of the LT

and LM components for SAHP++ on
MOOC.

Although conflicting gradients are
typically reduced when moving from
base to base+, this pattern indicates
that the residual conflicts primarily
hinder the mark prediction task. In
contrast, base++ effectively elimi-
nates these conflicts by using distinct
history representations for each task.
A significant advantage of base++ is
that it allows one task to continue
training after the other has reached
convergence. For example, Figure 4.5
illustrates the validation losses LT

and LM for SAHP++ on MOOC. Thanks to disjoint training, the LM metric
can be further optimized for additional epochs after training of the LT metric
ceases due to overfitting, thus achieving gains in mark prediction performance.
This feature is absent in base and base+, where both LM and LT metrics rely
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Figure 4.6: Reliability diagrams of the mark (left) and time (right) predictive
distributions for THP, SAHP and FNN in the base and base++ settings on
LastFM and MOOC. The cumulative distribution of PITs and accuracy align-
ing with the black diagonal correspond to perfect probabilistic and top-label
calibration, respectively. The reliability diagrams are averaged over 5 splits,
and error bars refer to the standard error.

on a shared set of parameters. In Figure 4.5, θT is fixed after the vertical red
line, resulting in a constant validation LT for the remaining training epochs of
the model.

Finally, referring back to the preliminary experiment on Figure 4.2, the results
with respect to LT and LM in Table 4.1 suggest that conflicting gradients are
mostly detrimental to model performance if (1) they are in great proportion
during training (i.e. high CG) and (2) if they are associated to low GMS
values. For instance, on Figure 4.2, THP and SAHP exhibit high CG associated
to high GMS values, whereas the remaining models conversely show a more
balanced CG, but with lower GMS values. We find that model performance
often improves in both these scenarios when preventing conflicting gradients
altogether in the base++ setting.
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Reliability diagrams. Figure 4.6 presents the reliability diagrams of the
time and mark predictive distributions for all models in the base and base++
settings on LastFM. The diagrams show that the base++ models are generally
better calibrated than their base counterparts, as evidenced by the bin accu-
racies aligning more closely with the diagonal. This improvement aligns with
the results in Table 4.1, where a lower LM indicates better accuracy. However,
improvements in the probabilistic calibration of arrival times between base
and base++ models are less noticeable, suggesting that conflicting gradients
during training predominantly affect the mark prediction task. We provide
reliability diagrams for other baselines and datasets in Appendix D.3.2.

Isolating the impact of conflicts on performance. Our experiments
reveal that the base+ and base++ settings result in a decrease of conflicting
gradients and to enhanced performance with respect to the time and mark
prediction tasks. However, for THP, SAHP and FNN, these settings do not
enable us to disentangle performance gains brought by a decrease in conflicts
from the ones brought by modifications of the decoder architecture. To address
this limitation, we introduce the following two settings based on the duplicated
model approach of Section 4.3.1:

• Shared History Encoders and Duplicated Decoders. The functions
λ∗(t;θT )/Λ∗(t;θT ) and p∗(k|t;θM ) are obtained through (4.14) from two
identical parametrizations of the same base decoder. However, similar to
the base+ setting, a common history encoder h is used, meaning that
these functions still share parameters via θh. Models trained in this
setting are indicated with a "-D" sign, e.g. THP-D.

• Disjoint History Encoders and Duplicated Decoders. This setting differs
from the previous one in the use of two distinct history embeddings hT

and hM in (4.14), implying that λ∗(t;θT )/Λ∗(t;θT ) and p∗(k|t;θM ) are
now completely disjoint parametrizations. We use the label "-DD" to
denote the models trained in this setting, e.g. THP-DD.

In contrast to base+ and base++, the base-D and base-DD settings retain
the same architecture as the base model, enabling us to directly evaluate the
impact of conflicting gradients on performance. In Table 4.2, we report the
performance with respect to LT and LM for THP, SAHP, and FNN trained
in the base, base-D and base-DD settings. We follow the same experimental
setup as before, and maintain the number of parameters comparable between
the different settings for fair comparison. We almost systematically observe
improvements on both tasks when moving from the base to the base-D or
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Table 4.2: LT and LM results for the base, base-D, and base-DD settings
across all datasets. The values are computed over 5 splits, and the standard
error is reported in parenthesis. Best results are highlighted in bold.

LM
LastFM MOOC Github Reddit Stack O.

THP 714.0 (16.5) 93.3 (1.4) 128.3 (17.3) 39.9 (1.3) 105.3 (0.7)
THP-D 677.1 (19.4) 82.8 (1.2) 121.4 (16.8) 39.1 (0.9) 104.7 (0.7)

THP-DD 607.2 (16.2)79.8 (1.2)113.5 (14.9)38.2 (1.0)104.4 (0.6)

SAHP 825.5 (25.6) 163.0 (2.2) 138.0 (19.1) 77.9 (4.7) 108.4 (1.0)
SAHP-D 832.1 (32.0) 93.3 (1.5) 128.8 (18.5) 56.0 (1.0) 105.1 (0.7)

SAHP-DD692.1 (19.7)89.0 (1.6)115.4 (15.3)51.0 (0.5)104.8 (0.6)

FNN 739.5 (25.2) 78.8 (1.3) 113.5 (15.4) 47.0 (1.4) 107.3 (0.6)
FNN-D 732.8 (19.7) 76.8 (1.2) 112.9 (15.4) 56.9 (0.9) 103.8 (0.7)

FNN-DD 670.0 (18.1) 79.7 (1.4) 111.4 (15.3) 48.8 (1.6) 103.7 (0.7)

LT
LastFM MOOC Github Reddit Stack O.

THP -945.1 (41.3) -135.9 (1.3) -242.5 (38.5) -72.3 (2.3) -84.0 (1.4)
THP-D -995.1 (50.2) -164.8 (1.8) -258.5 (47.2) -90.3 (1.9) -85.3 (1.4)

THP-DD -1023.8 (53.0) -162.1 (4.3) -279.0 (55.2) -92.6 (2.1) -84.8 (1.4)

SAHP -1263.8 (57.9) -266.0 (3.5) -346.5 (57.4) -72.9 (1.8) -89.7 (1.4)
SAHP-D -1319.1 (57.9) -288.7 (3.7) -348.7 (58.2) -92.9 (2.3) -90.1 (1.3)

SAHP-DD -1319.9 (59.3) -294.0 (3.6) -367.9 (59.1) -87.0 (3.5) -87.1 (2.6)

FNN -1276.2 (58.6) -280.9 (3.2) -363.1 (57.2) -75.3 (2.5) -81.2 (1.3)
FNN-D -1314.1 (59.7) -286.8 (3.5) -360.0 (55.9) -81.3 (1.7) -81.7 (1.3)

FNN-DD -1294.4 (57.5) -286.3 (3.8) -362.5 (56.4) -82.7 (2.2) -81.4 (1.4)
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Figure 4.7: Distribution of cos ϕTM during training at the encoder (ENC) and
decoder (DEC) heads for THP, SAHP and FNN in the base and base-D setup
on LastFM and MOOC. "B" and "D" refer to the base and base-D models,
respectively, and the distribution is obtained by pooling the values of ϕTM over
5 training runs. As the decoders are disjoint in the base-D setting, note that
cos ϕTM is not defined.

base-DD settings. Moreover, these performance gains are often associated to a
decrease in (severe) conflicts during training, as shown on Figure 4.7. Further-
more, when comparing the results between Tables 4.1 and 4.2, we note that
our base+ and base++ parametrizations often show improved performance
compared to the base-D and base-DD settings, especially on the mark pre-
diction task. This highlights that the benefits of our parametrizations extend
beyond the prevention of conflicts to achieve greater predictive performance.
We provide more visualizations in Appendix D.3.4.
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Figure 4.8: Left: Evolution of CG, GMS, TPI with increasing model capacity
for the base THP, SAHP and FNN during training on LastFM and MOOC.
Right: Evolution of the test LT and LM in the base and base-DD settings.

Conflicting gradients remain harmful as capacity increases. To assess
whether conflicting gradients remain detrimental to predictive performance for
higher-capacity models, we train THP, SAHP and FNN in the base and base-
DD settings while progressively increasing the number of trainable parameters.
Figure 4.8 shows the evolution of the proportion of CG, GMS and TPI during
training for these models on LastFM and MOOC, along with the evolution
of their test LT and LM as a function of number of parameters. For each
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capacity (25K, 50K, 75K and 100K parameters), we maintain the distribution
of parameters between the encoder and decoder heads constant at 0.67/0.33.
Note that we only report the CG, GMS, and TPI values for the base models, as
the base-DD setting is by definition free of conflicts. We note that increasing
a model’s capacity has a limited impact on the CG, GMS and TPI values, as
well as on model performance with respect to both LT and LM . In contrast,
differences in performance between the base and base-DD setups are more sig-
nificant, suggesting that conflicting gradients remain harmful to performance
even with increased model capacity.

Scaling the loss does not efficiently address conflicts. Our findings
in Figure 4.4 suggest that conflicting gradients generally tend to favor TT at
the encoder heads during optimization, as illustrated by TPI values > 0.5.
To better balance tasks during training, a natural approach would consist in
scaling the contribution of TT in (4.2) to reduce its impact on the overall loss,
i.e.

L(θ;Strain) =
1

s
LT (θ;Strain) + LM (θ;Strain), (4.42)

where s ≥ 1 is a scaling coefficient. To assess the effectiveness of this method,
we train the base THP, SAHP and FNN models on the objective in (4.42)
following the same experimental setup as before. For these models, we report in
Figure (4.9) the evolution of the training CG, GMS and TPI values, along with
their unscaled test LT and LM . We observe that the occurrence of conflicting
gradients is marginally impacted by larger values of s. However, as scaling
increases, the magnitude of gT = 1

s∇LT (Strain;θ) diminishes, which translates
into decreased values of GMS and TPI. Hence, as s grows, the contribution of
gT to the gradient update at time s+1, i.e. θs+1 = θs− η(gT +gM ), becomes
more and more marginal. Consequently, during training, the gradient updates
will be mostly governed by gM , leading θ to converge to a state that is primarily
beneficial to the mark prediction task. Nevertheless, the crashed TPI and GMS
values are at the root of significant degradation with respect to LT , offsetting
the gains on LM . Although a specific value of s could lead to a trade-off
between tasks, models trained in our base+ or base++ settings generally show
improved performance with respect to both tasks simultaneously, as shown in
Table 4.1.

Disjoint parametrizations remain efficient at all training sizes. At
this stage, a question that remains unanswered relates to the efficiency of
the disjoint parametrizations in the base++ setting compared to the base
models when the number of training sequences is limited. To answer this,
we train FNN and SAHP in the base and base++ settings on LastFM and
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Figure 4.9: Left: Evolution of CG, GMS, TPI with scaling coefficient s for the
base THP, SAHP and FNN during training on LastFM. Right: Evolution of
the test LT and LM in the base and base-DD settings.

MOOC on increasing proportions p% of sequences to which the model has
access during training. We maintain the same experimental setup detailed in
Section 4.4.1, and Figure 4.10 shows the evolution of the test LT and LM as
a function of p%. As observed, models trained in the base++ setting remain
systematically more efficient than their base counterparts on both the time and
mark prediction tasks, even at low values of p%. Moreover, all models show
increasing performance as the amount of sequences available during training
grows, which aligns with expectations.
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Figure 4.10: Left: Evolution of the test LT and LM as a function of the
proportion of sequences in Strain kept during training for SAHP and FNN in
the base and base++ settings on LastFM and MOOC. The results are averaged
over 5 splits, and vertical bars refer to the standard error.

An alternative approach to model the joint distribution. As detailed
in Section (4.3.2), our parametrization of LNM+ alleviates the assumption
of conditional independence between arrival-times and marks in LNM (Shchur
et al., 2020a). Relatedly, Waghmare et al. (2022) also proposed an extension of
LNM that relaxes this assumption, although their approach differs from ours in
some key aspects. Specifically, their work parametrizes f∗(τ |k;θT ) as a distinct
mixture of log-normal distributions for each mark k, and p∗(k;θM ) is obtained
by removing the temporal dependency in (4.26)6. For further reference, we
denote this model as LNM-Joint. Although both LNM+ and LNM-Joint aim
to model the joint distribution f∗(τ, k), some conceptual differences separate
the two approaches:

(1) By design, LNM-Joint cannot be trained in the base++ setup as it prevents
the decomposition of the NLL into disjoint LT and LM terms. Indeed, suppose
that we use two distinct history representations hT and hM to parametrize
f∗(τ |k;θT ) and p∗(k;θM ) respectively, as detailed in Section 4.3.2. Here, θT
and θM are disjoint set of learnable parameters. The NLL of a single training
sequence S = {(τi, ki)}ni=1 observed in [0, T ] would write

L(θT ;θM ) =−
n∑

i=1

log f∗(τi|ki;θT )− log (1− F ∗ (T ;θT ,θM ))︸ ︷︷ ︸
LT (θT ,θM )

−
n∑

i=1

log p∗(ki;θM )︸ ︷︷ ︸
LM (θM )

, (4.43)

6They rely on a common history embedding h to parametrize both predictive distribu-
tions.
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Table 4.3: LT , LM and Accuracy results for LNM+ and LNM-Joint on all
datasets. The values are computed over 5 splits, and the standard error is
reported in parenthesis. Best results are highlighted in bold.

LastFM MOOC Github Reddit Stack Overflow

LM

LNM+ 668.6 (15.8) 77.1 (1.3) 112.3 (15.1) 41.4 (1.1) 103.2 (0.7)
Joint-LNM 671.3 (17.1) 127.0 (6.4) 117.3 (15.5) 42.9 (0.9) 106.6 (0.7)

Accuracy

LNM+ 0.24 (0.01) 0.52 (0.0) 0.67 (0.01) 0.82 (0.0) 0.49 (0.0)
Joint-LNM 0.23 (0.01) 0.23 (0.03) 0.64 (0.01) 0.82 (0.0) 0.47 (0.0)

LT

LNM+ -1320.4 (60.5) -310.6 (3.7) -378.7 (59.4) -96.4 (2.0) -91.1 (1.3)
Joint-LNM -1326.2 (58.3) -303.9 (3.3) -381.0 (59.6) -94.3 (2.0) -90.6 (1.4)

where F ∗ (T ;θT ;θM ) =
∫ T−tn
0

∑K
k=1 f

∗(s|k;θT )p∗(k;θM )ds depends on both
θT and θM . Consequently, the NLL cannot be disentangled into disjoint LT

and LM terms, proscribing disjoint training in the base++ setup. Conversely,
choosing to parametrize f∗(τ ;θT ) and p∗(k|τ ;θM ) as done in our framework
leads to the decomposition in (4.37) as F ∗(T ;θT ) is solely a function of θT .

(2) For LNM-Joint, M mixtures must be defined for each k, leading to M ×K
log-normal distributions in total. Conversely, in LNM+, f∗(τ ;θT ) does not
scale with K, and p∗(τ |k;θM ) requires an equivalent number of parameters as
p∗(k;θM ) in LNM-Joint.

For completeness, we integrate LNM-Joint in our code base using the origi-
nal implementation as reference. In Table (4.3), we compare its performance
against LNM+ on the time and mark prediction tasks in terms of the LT , LM ,
and accuracy metrics, following the experimental setup detailed previously.
We observe improved performance of LNM+ compared to LNM-Joint on the
mark prediction task (LM and accuracy), and competitive results on the time
prediction task (LT ). Despite both approaches modelling the joint distribu-
tion, our results suggest that the dependency between arrival times and marks
is more accurately captured by p∗(k|τ ;θM ) than by f∗(τ |k;θT ).

Computational time. We report in Table (4.4) the average execution time
(in seconds) for a single forward and backward pass on all training sequences
of all datasets . The results are given for all models in the base, base+ and
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Table 4.4: Average execution time (in seconds) for a single forward and back-
ward pass on all training sequences of the MOOC dataset. Results are averaged
over 50 epochs.

LNM RMTPP FNN THP SAHP STHP

Base + ++ Base + ++ Base + ++ Base + ++ Base + ++ Base + ++

LastFM 2.2 2.23 3.26 1.91 1.94 2.94 4.29 3.66 4.74 2.96 2.57 3.62 4.82 3.42 4.48 3.08 \ 4.17

MOOC 3.97 3.99 5.6 3.24 3.33 4.37 6.36 6.28 8.07 5.19 4.15 5.76 8.08 5.91 7.74 5.61 \ 6.72

Github 0.34 0.39 0.51 0.34 0.34 0.5 0.76 0.65 0.8 0.38 0.43 0.58 0.51 0.55 0.69 0.49 \ 0.64

Reddit 8.74 9.53 11.5 7.99 8.14 11.79 19.13 16.47 20.32 9.75 9.78 13.5 13.63 11.99 15.9 11.59 \ 15.54

Stack O. 16.02 16.63 22.98 14.08 14.54 20.31 32.83 28.15 33.95 16.32 16.81 23.1 21.11 20.77 26.45 19.84 \ 26.07

base++ setups, and are averaged over 50 epochs. We notice that the computa-
tion of two separate embeddings hT and hM in the base++ setup inevitably
leads to an increase in execution time, which appears more pronounced for
larger datasets such as Reddit and Stack Overflow. However, the increased
computational complexity is generally offset by improved model performance,
as detailed in Table 4.1.

4.5. Conclusion

Learning a neural MTPP model can be essentially interpreted as a two-task
learning problem, in which one task is focused on learning a time predictive
distribution, while the other concerns learning a mark predictive distribution.
Typically, most neural MTPP models implicitly require these two tasks to
share a common set of trainable parameters. In this paper, we demonstrate
that this parameter sharing leads to the emergence of conflicting gradients dur-
ing training, often resulting in degraded performance on each individual task.
To prevent this issue, we introduce novel parametrizations of neural MTPP
models that enable separate modeling and training of each task, effectively
preventing the occurrence of conflicting gradients. Through extensive experi-
ments on real-world event sequence datasets, we validate the advantages of our
framework over the original model configurations, particularly in the context
of mark prediction. However, we acknowledge several limitations in our study.
Firstly, our focus was solely on categorical marks. Investigating conflicting
gradients in more complex scenarios, such as temporal graphs (Trivedi et al.,
2019; Gracious & Dukkipati, 2023) or spatio-temporal point processes (Zhou &
Yu, 2023; Zhang et al., 2023), presents a promising avenue for future research.
Secondly, our analysis was limited to neural MTPP models trained using the
NLL. Extending our framework to other proper scoring rules (Brehmer et al.,
2021) is also a potential area for future exploration.
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In Chapters 3 and 4, we saw that defining a neural MTPP model essentially per-
tains to specifying a parametrization of either f∗(τ, k;θ), λ∗k(t;θ), or Λ∗

k(t;θ),
provided that the chosen parametrization defines a valid distribution over event
sequences. Once we have the set of trained parameters θ̂ obtained by optimiz-
ing an appropriate objective function, the MTPP model produces an estimate
that can be used for downstream prediction tasks on new test sequences. This
enables us to address queries of the sort “When is the next event likely to
occur?”, “What will be the type of the next event, given that it occurs at a
certain time t?” or “How long until an event of type k occurs?”.

Providing accurate answers to the above queries can be achieved through dif-
ferent means, and constitutes an important inquiry that any competent MTPP
model should achieve. For instance, from f∗(τ ; θ̂) and p∗(k|τ ; θ̂), we can pre-
dict the arrival time of the next event by computing its expected value, and
its mark by taking the label associated to the highest probability at that time.
Such predictions are known as point predictions, in the sense that they resume
all possible future outcomes to a single value. While point predictions provide
in general clear interpretation, they face a major limitation: in reporting a
single value, they prevent us from effectively assessing the uncertainty of the
model in its predictions.

In critical application domains, such as diagnostic medicine, epidemiology, or
high-frequency trading, quantifying the uncertainty in the predictions pro-
motes better-informed decision making, thereby limiting the risks of potentially
disastrous consequences. From a practitioner perspective, accurate quantifica-
tion of the uncertainty further contributes to making a model more reliable
and interpretable, which in turn encourages trust in the predictions.

Consequently, instead of reporting point predictions for future events, we may
want to construct a prediction region for the next arrival time, mark, or both,
based on a sequence of observed historical events. This region should typically
include a subset of potential values that are highly likely to occur, aligned
with a predetermined probability coverage level. For instance, suppose that we
want to construct a prediction interval Rτ for the next event’s inter-arrival time
that is guaranteed to contain the true observation with 80% probability. Given
f∗(τ ; θ̂), one could naively construct Rτ by taking the interval defined by 0 and
the quantile 0.8 of the time predictive distribution, i.e. Rτ = [0, Q∗(0.8; θ̂)],
where Q∗(· ; θ̂) is the predictive quantile function of inter-arrival times.

Unfortunately, the above interval would only be guaranteed to meet the desired
coverage level if and only if the predictive distribution returned by the MTPP
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model f∗(τ ; θ̂) matches the true distribution f∗(τ). Unfortunately, as we have
seen in previous chapters, the model may provide a poor approximation of
the true unknown underlying process. This limitation can be attributed to
various factors, such as model misspecification or lack of training data. Conse-
quently, prediction regions derived solely from the estimates of the model may
be unreliable, failing to faithfully reflect the true uncertainty.

Building on the framework of conformal prediction (CP) (Vovk et al., 2005),
we aim in this chapter to develop more reliable methods for uncertainty quan-
tification in neural MTPP models. As we’ve seen in Section 2.2.2, CP enables
the construction of distribution-free prediction regions, offering a finite-sample
coverage guarantee even when the base model is unreliable. Although con-
formal prediction has been considered in the closely related field of survival
analysis (Candès et al., 2023; Gui et al., 2023), these studies have primarily
focused on univariate survival times, whereas our problem also involves cat-
egorical marks. To our knowledge, this study represents the first attempt to
connect the field of neural MTPP models to conformal prediction.

In line with the standard assumption prevalent in the neural MTPP literature,
we consider the setting in which a set of observed event sequences are drawn
from the ground-truth process. Furthermore, for each event sequence, we con-
struct an input-output pair, where the input is a neural vector representation
of the event sequence history, and the output is a bivariate response represent-
ing the arrival time and mark of the last event of the sequence. This aligns our
approach with the scenario considered in Stankeviciute et al. (2021); however,
in that context, the authors focused on regular time series forecasting.

Our primary objective is to generate joint prediction regions for both the event
arrival time and mark that are distribution-free and come with a finite-sample
coverage guarantee. This entails developing a bivariate conformal prediction
region, capable of accommodating both a strictly positive, continuous response
and a categorical response with numerous marks, all without depending on
distributional assumptions. Figure 5.1 gives a toy example of such predic-
tion region. Unfortunately, the existing literature on conformal prediction for
scenarios involving multi-response or mixed response types is rather limited.
Moreover, many neural MTPP models typically focus on either estimating the
joint density of arrival time and mark, or the marked intensity functions from
which it is derived. Methods addressing these aspects in the context of CP are
comparatively scarce. Notable contributions in the field of multi-response con-
formal prediction include Feldman et al. (2023) and Lei et al. (2013). However,
Feldman et al. (2023) proposed a method centered on multi-output quantile
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Figure 5.1: Toy illustration of a joint prediction region constructed from the
joint density of arrival times and marks. The three colored curves represent
predictive density functions while the horizontal bars represent prediction in-
tervals.

regression for continuous random vectors, which does not easily align with our
context. On the other hand, while Lei et al. (2013) offers a density-based con-
formal method, it falls short in addressing estimation problems that involve
covariates.

We will first propose a naive method that, despite its simplicity, still offers a
finite-sample coverage guarantee. This approach involves combining separate
prediction regions for the event inter-arrival time and the mark. However, by
neglecting potential dependencies between these variables, this method may
be overly conservative. Consequently, it could lead to inflexible and large
prediction regions. Such regions, while guaranteeing coverage, may not be
tight, failing to accurately reflect the true underlying uncertainty. Next, we
will adopt a more effective strategy that accounts for the dependencies between
the arrival time and the mark. Specifically, we will construct a Highest Density
Region (HDR) Hyndman (1996) based on their joint predictive density. To
achieve a conformal coverage guarantee, we will consider a generalization of
the univariate HPD-split method (Izbicki et al., 2022) for bivariate responses.
In contrast to the naive approach, this method has the advantage of efficiently
excluding unlikely combinations of the two variables, while still maintaining
the pre-specified coverage level.

Our second objective is to explore conformal prediction methods to generate
univariate prediction regions, independently for the arrival time and the mark.
Considering the continuous nature of inter-arrival times, our focus will be on
conformal regression techniques. We examine both symmetric and asymmetric
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prediction intervals using conformal quantile regression (Romano et al., 2019),
as well as prediction regions derived from conformal density-based methods
(Izbicki et al., 2022). Conversely for the mark, we explore conformal classifica-
tion methods. Here, we intend to investigate conformal methods that involve
thresholding the mark-conditional probabilities, thereby creating adaptive pre-
diction sets (Romano et al., 2020; Angelopoulos et al., 2021).

While achieving finite-sample marginal coverage is both desirable and prac-
tically feasible, we are also interested in the stronger notion of conditional
coverage which requires the desired coverage level to be met conditionally. Al-
though this is not attainable without imposing strong distributional assump-
tions (Vovk, 2012; Foygel Barber et al., 2021), we will also assess the conformal
prediction regions in terms of approximate notions of conditional coverage.

Finally, we will evaluate the validity and efficiency of both the bivariate and
univariate conformal prediction methods through an extensive series of exper-
iments on simulated and real-world event sequence datasets. Additionally, we
will explore heuristic versions of these methods, which involve substituting
the model estimate in the corresponding oracle prediction region. Our evalu-
ation will employ metrics that quantify both the probability coverage and the
sharpness of the region, as determined by its length.

5.1. Problem Formulation and Goals

In this chapter, we introduce a slight change of notations compared to
the rest of the thesis. We now suppose that we have access to a dataset
D∗ = {S1, ...,Sn}, where each sequence Si =

{
ei,j = (ti,j , ki,j))

mi
j=1

}
comprises

mi events with arrival times observed within the interval [0, T ] and i = 1, ..., n.

Moreover, we will drop the "∗" symbol and explicitly write the dependency of
a function on the history embedding h, e.g. f∗(τ, k; θ̂) = f(τ, k|h; θ̂). Finally,
once the neural MTPP model is trained, we use the symbol "ˆ" to denote an
estimate of a function, e.g. f̂(τ, k|h) is an estimate of the true f(τ, k|h), where
the dependency on θ̂ is omitted.

Finally, as commonly done in the context of neural MTPP research, we assume
that the sequences are exchangeably drawn from the underlying ground-truth
process. All remaining notations are either retained from the previous chapter,
or explicitly defined throughout the text.
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Figure 5.2: Illustration of the input-output pairs D = { (hi, ei) }ni=1 and the
joint prediction region we aim to construct for en+1 given a new input hn+1.

Let us consider the dataset D∗, which is composed of n sequences assumed
to be drawn exchangeably from the ground-truth MTPP process. For each
sequence Si ∈ D∗, we define the input-output pair (hi,mi , ei,mi), where
ei,mi = (τi,mi , ki,mi) is a bivariate response corresponding to the last event
in Si, and hi,mi is the history embedding associated to it. A similar sce-
nario has been explored by Stankeviciute et al. (2021), but for conformal time
series forecasting. From these input-output pairs, we construct the dataset
D = { (hi,mi , ei,mi) }

n
i=1. To simplify notation, we will henceforth denote

(hi, ei) = (hi,mi , ei,mi), implying that these quantities are consistently defined
for the last event of a sequence Si.

Given D and a new test input hn+1, our primary goal is to construct an
informative distribution-free joint prediction region R̂τ,k(hn+1) ⊆ R+ ×K for
the bivariate pair en+1 = (τn+1, kn+1) of hn+1. This prediction region must
achieve finite-sample marginal coverage at level 1− α, that is

P((τn+1, kn+1) ∈ R̂τ,k(hn+1)) ≥ 1− α. (5.1)

Here, the probability is taken over all n+ 1 observations D ∪ {(hn+1, en+1)},
and the condition must hold true for any chosen values of α and n. Essen-
tially, this entails developing a joint prediction region for a bivariate response,
accommodating both a continuous and a categorical response, without rely-
ing on strong distributional assumptions. Figure 5.2 illustrates our primary
objective given a dataset D = { Si }ni=1 and a new test sequence Sn+1.

We will also examine scenarios where we generate individual prediction regions
for both the arrival time and the mark. Given that the arrival time is a
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continuous variable, we will use conformal regression techniques, while for the
mark, a categorical variable, conformal classification methods will be used.

For the inter-arrival times, given D = { (hi, τi) }ni=1 and a new test input
hn+1, we seek to construct a prediction region R̂τ (hn+1) ⊆ R+ for τn+1 which
achieves finite-sample marginal coverage at level 1− α, that is

P(τn+1 ∈ R̂τ (hn+1)) ≥ 1− α. (5.2)

Similarly for the marks, given D = { (hi, ki) }ni=1 and a new test input hn+1,
we want to generate a prediction set R̂k(hn+1) ⊆ K for kn+1 which achieve
finite-sample marginal coverage at level 1− α, that is

P(kn+1 ∈ R̂k(hn+1)) ≥ 1− α. (5.3)

Finally, beyond ensuring a finite-sample coverage guarantee, it is essential that
the prediction regions are informative, which implies striving for the smallest
possible regions. To accomplish this, we will adopt the split conformal predic-
tion framework Papadopoulos et al. (2002), a widely used variant of CP known
for its reduced computational demands. This method, which involves parti-
tioning the data, is relatively simple but effective in transforming any heuristic
notion of uncertainty into a rigorous one (Angelopoulos & Bates, 2023). It
enables the construction of distribution-free prediction regions that achieve
finite-sample coverage guarantees. We elaborate on this methodology in the
following paragraphs.

Consider D = { (hi,yi) }ni=1, a dataset consisting of n exchangeable pairs. In
the context of our problem setup, the response yi ∈ Y varies according to the
scenario: it can be bivariate as yi = ei with Y = R+×K, or univariate as either
yi = τi or yi = ki, with Y = R+ or Y = K, respectively. Additionally, we have
access to a MTPP model that provides a heuristic measure of uncertainty ĝ
for y given h. Recall from Section 2.2.2 that the split conformal procedure to
generate a prediction region for a new observation yn+1 at coverage level 1−α
can be summarized in the following steps:

1. Split D into two non-overlapping sets, Dtrain and Dcal with
Dtrain ∪ Dcal = D.

2. Fit the MTPP model to the observations in Dtrain, yielding a heuristic
measure of uncertainty ĝ for y given h.

3. Use ĝ to define a non-conformity score function s (h,y) ∈ R that assigns
larger value to worse agreement between h and y.
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4. Compute the calibration scores using the observations in Dcal, i.e.

{ si }|Dcal|
i=1 := { s (h,y) : (h,y) ∈ Dcal } . (5.4)

5. Compute the 1− α empirical quantile of these calibration scores:

q̂ = Quantile
(
s1, ..., s|Dcal| ∪ {∞ } ; ⌈(|Dcal|+ 1)(1− α)⌉

|Dcal|

)
. (5.5)

6. For a new test input hn+1, use q̂ to construct a prediction region for yn+1

with a 1− α coverage level as follows:

R̂y(hn+1) = { y ∈ Y : s(hn+1,y) ≤ q̂ } . (5.6)

As discussed in Section 2.2.2, we can show that this region satisfies

P(yn+1 ∈ R̂y(hn+1)) = P(s(hn+1, τn+1) ≤ q̂) ≥ 1− α. (5.7)

In other words, the marginal coverage guarantees in (5.1), (5.2) and (5.3) are
satisfied. Moreover, if no ties between the scores occur with probability one,
we can further show that this marginal coverage is upper bounded, i.e.

1− α ≤ P(yn+1 ∈ R̂y(hn+1)) ≤ 1− α+
1

|Dcal|+ 1
. (5.8)

Finally, while marginal coverage is a desirable and practically achievable prop-
erty, we are also interested in the stronger notion of conditional coverage:

P(yn+1 ∈ R̂y(hn+1) | hn+1) ≥ 1− α ∀ hn+1, (5.9)

which requires the desired coverage level 1−α to be met for all hn+1. Despite
(5.9) not being achievable without strong distributional assumptions (Vovk,
2012; Foygel Barber et al., 2021), we still aspire for the prediction regions to
achieve approximate notions of conditional coverage. To meet such desiderata,
Section 5.3.1 and Section 5.3.2 explore conformal scores to achieve the guar-
antees in (5.2) and (5.3), respectively. Similarly, Section 5.4 seeks conformal
scores to attain the joint guarantee in (5.1).
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5.2. Related Work

Conformal prediction for temporal data. Our work builds upon Confor-
mal Prediction (CP), first introduced by Vovk et al. (1999). CP is a powerful
tool in machine learning for providing reliable uncertainty estimates. An-
gelopoulos & Bates (2023) offer a modern introduction, while Shafer & Vovk
(2008) present a more classical perspective. Our research specifically focuses
on the split-conformal prediction method (Papadopoulos et al., 2002). In the
context of temporal data, CP has seen significant recent development. Gibbs
& Candès (2021) and Zaffran et al. (2022) proposed methods to adapt CP
for sequential data shifts, continuously adjusting an internal coverage target.
Stankeviciute et al. (2021) extended CP to time series, and considered multi-
step predictions, assuming exchangeability in individual time series. Con-
versely, a branch of research led by Tibshirani et al. (2019); Foygel Barber
et al. (2021) and Xu & Xie (2023a) challenges the exchangeability assump-
tion by applying weighted samples. This approach, while offering stronger
uncertainty estimates by leveraging similar past instances, results in a weaker
conformal guarantee. Although conformal prediction has been explored in the
closely related field of survival analysis (Candès et al., 2023; Gui et al., 2023),
these studies have primarily focused on univariate survival times.

For continuous variables, our work builds on Romano et al. (2019), which ad-
justs quantile regression estimates, and Izbicki et al. (2022), which outputs
regions in the form of HDR for univariate responses. For discrete variables,
we consider Sadinle et al. (2019), which minimizes the average prediction set
length, and Romano et al. (2020) and Angelopoulos et al. (2021), which demon-
strate good conditional coverage.

Multi-response conformal prediction. Our study also intersects with the
field of multi-output CP. Sun & Yu (2023) introduced CopulaCPTS, applying
CP to time series with multivariate targets and adapting the calibration set
in each step based on a copula of the target variables. Feldman et al. (2023)
used a deep generative model to learn a unimodal representation of the re-
sponse, allowing for the application of multiple-output quantile regression on
this learned lower dimensional representation. This method generates flexi-
ble and informative regions in the response space, a capability not present in
earlier methods.
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5.3. Individual Prediction Regions for Arrival Times
and Marks

In this section, we outline the methods for generating individual prediction
regions R̂τ (hn+1) and R̂k(hn+1) for τn+1 and kn+1, respectively. As τn+1 is a
continuous variable, we rely on conformal regression techniques to construct
R̂τ (hn+1). Conversely, kn+1 being a categorical variable, we leverage conformal
classification approaches to build R̂k(hn+1).

5.3.1 Constructing a Prediction Region for the Arrival Time

Using a dataset D = { (hi, τi) }ni=1, our objective is to construct a prediction
region R̂τ (hn+1) ⊆ R+ for the arrival time τn+1 of a new test input hn+1. This
prediction region must achieve finite-sample marginal coverage at level 1− α,
as given in (5.2). An intuitive approach is to create an equal-tailed prediction
interval using conditional quantiles at levels α/2 and 1 − α/2. Let Q̂τ (·|h) be
the predictive quantile function of τ given h trained using D. We can define a
symmetric prediction interval for τn+1 as:

R̂τ (hn+1) = [Q̂τ (α/2|hn+1), Q̂τ (1− α/2|hn+1)], (5.10)

However, as previously mentioned, there is no guarantee that the estimate
Q̂τ (·|hn+1) is a good approximation of the true Qτ (·|hn+1), resulting in no
finite-sample coverage guarantee. By adjusting (5.10), Conformalized Quantile
Regression (C-QR) can provide a symmetric prediction interval with a finite-
sample coverage guarantee (see Theorem 2 in (Romano et al., 2019)). For a
symmetric prediction interval given by (5.10), the C-QR nonconformity score
can be defined as

sCQR(h, τ) = max
(
Q̂τ (α/2|h)− τ, τ − Q̂τ (1− α/2|h)

)
, (5.11)

and accounts for both potential undercoverage and overcoverage from the
model. Indeed, the further τ falls outside of the interval R̂τ (hn+1) in (5.10),
the greater is the positive value of sCQR. Conversely, sCQR decreases the fur-
ther τ correctly falls within the interval R̂τ (hn+1). After evaluating sCQR on
hold-out calibration samples and computing q̂ using (5.5), we construct a valid
prediction interval for τn+1 as:

R̂τ,CQR(hn+1) = [Q̂τ (α/2|hn+1)− q̂, Q̂τ (1− α/2|hn+1) + q̂], (5.12)

which satisfies marginal coverage at level 1− α since

P(τn+1 ∈ R̂τ (hn+1)) = P(sCQR(hn+1, τn+1) ≤ q̂) ≥ 1− α. (5.13)
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However, since the strictly positive arrival times often show a skewed distribu-
tion with a significant concentration of probability mass close to 0, this method
would not encompass the high-density region between levels 0 and α/2, and thus
would lead to unnecessarily large intervals. Therefore, a more effective strategy
involves generating an asymmetric interval extending from level 0 to α, where
the lower bound of the interval remains fixed at 0, and the upper bound, or
the right tail, is independently adjusted. This translates into the following
asymmetric prediction interval for τn+1:

R̂τ (hn+1) = [0, Q̂τ (1− α|hn+1)], (5.14)

for which we define a Conformalized Quantile Regression Left (C-QRL) non-
conformity score, expressed as:

sCQRL(h, τ) = τ − Q̂τ (1− α|h). (5.15)

Naturally, this score inherits the same interpretation as the one of C-QR, and
leads to the following asymmetric prediction region after estimating q̂ on the
calibration samples:

R̂τ,CQRL(hn+1) = [0, Q̂τ (1− α|hn+1) + q̂], (5.16)

Additionally, it is worth noting that both sCQR and sCQRL can be directly
computed from the ground compensator. Noting τ̂α = Q̂τ (α|h) and supposing
that tj−1 is the last observed arrival time in Ht, we have

F (τ̂α) = α (5.17)
⇐⇒ 1− exp[−Λ(tj−1 + τ̂α|h)] = α (5.18)

⇐⇒ τ̂α = Q̂τ (α|h) = Λ̂−1 (−log (1− α)|h)− tj−1. (5.19)

Moreover, if the estimators of the quantiles are consistent (that is, they con-
verge to the true conditional quantiles as the sample size increases), C-QR and
C-QRL have asymptotic conditional coverage, and therefore (5.9) will hold
approximately if n is large (Sesia & Candès, 2020, Corollary 1). As alterna-
tives to C-QR and C-QRL for constructing prediction intervals for τn+1, one
could instead leverage the approaches of Conformalized Histogram Regression
(CHR) (Sesia & Romano, 2021) or HPD-Split (Izbicki et al., 2022). While we
expand further on HPD-split in a later section, we leave CHR as inquiry for
future work.
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5.3.2 Constructing a Prediction Set for the Mark

Using a dataset D = { (hi, ki) }ni=1, our objective is to construct a prediction
set R̂k(hn+1) ⊆ K for the mark kn+1 of a new test input hn+1. This prediction
set must achieve finite-sample marginal coverage at level 1−α, as given in (5.3).

Let p̂(·|h) denote the predictive PMF of k given h, trained using D. To gen-
erate a prediction set for kn+1, a simple method involves ranking the marks
in descending order by their associated conditional probabilities and retaining
those marks where the cumulative sum of these probabilities is less than or
equal to the pre-specified probability coverage. However, as previously men-
tioned, there is no guarantee that we have a good approximation of the true
conditional probabilities p(·|h).

Furthermore, MTPPs often involve a large number of marks, e.g. up to K = 50
in our experiments. Yet in practice, only a few of these marks hold significant
probability. Identifying and focusing on these high-probability marks is es-
sential as it leads to more informative prediction sets. This is the rationale
behind the method of conformal Adaptive Prediction Sets (APS) (Romano
et al., 2020). We focus on the more recent method of Reguralized Adaptive
Prediction Sets (RAPS) (Angelopoulos et al., 2021), which consistently gen-
erates prediction sets of smaller size than APS by introducing regularization.
Specifically, noting r(k) = | { k′ ∈ K : p̂(k′ | h) ≥ p̂(k|h) } | as the ranking of
the observed mark k among the probabilities in p̂(·|h) and (x)+ as the positive
part of x, RAPS defines the following nonconformity score:

sRAPS(h, k) =
∑

k′:p̂(k′|h)>p̂(k|h)

p̂(k′|h) + u · p̂(k|h) + γ (r(k)− kreg)
+ , (5.20)

where u is a uniform random variable, while γ, kreg ≥ 0 are regularization
parameters. Essentially, the uniform variable u handles the fact that the term∑

k′:p̂(k′|h)>p̂(k|h) p̂(k
′|h) jumps discretely with each mark k′, which would lead

to too conservative sets. Conversely, the randomized term u · p̂(k|h) allows for
the random removal of the least probable mark in each prediction set, leading
to exactly 1 − α coverage (Romano et al., 2020). Moreover, in (5.20), the
regularization term γ (r(k)− kreg)

+ helps promote smaller set sizes compared
to the ones returned by APS. As discussed in Angelopoulos et al. (2021), this is
because APS can be sensible to the noisy probability estimates that are deep
down the tail of p̂(·|h), and whose ordering is often determined by random
chance. In contrast, the regularization term in RAPS applies a strong penalty
to these noisy probabilities, hence avoiding the inclusion of their associated
mark to the returned prediction sets. Nonetheless, note that the nonconformity



141

score of APS can be easily recovered by setting γ = 0 in (5.20). Minus the
randomization and regularization terms, the RAPS score essentially computes
the cumulative sum of mark probabilities that are greater or equal to the
probability of the observed ground-truth mark k. If we had knowledge of the
true PMF of marks, we could construct a prediction set for kn+1 as

R̂k(hn+1) =
{
k′ ∈ K : sRAPS(hn+1, k

′) ≤ 1− α
}
, (5.21)

that would meet the required marginal coverage of 1 − α. Instead, the split
conformal procedure introduced in Section 5.1 first computes the RAPS scores
on a hold-out calibration set Dcal. Then, having computed the adjusted 1− α
quantile q̂ for these scores from (5.5), we construct the following prediction set
for kn+1:

R̂k(hn+1) =
{
k′ ∈ K : sRAPS(hn+1, k

′) ≤ q̂
}
, (5.22)

which satisfies the desired marginal coverage guarantee at level 1− α since

P(kn+1 ∈ R̂k(hn+1)) = P(sRAPS(hn+1, kn+1) ≤ q̂) ≥ 1− α. (5.23)

Finally, it is worth noting that the APS/RAPS scores can be derived from the
marked intensities by recovering the marginal conditional probabilities using
the following definition:

p̂(k|h) = Eτ [p̂(k|τ,h)] = Eτ

[
λ̂k(tj−1 + τ |h)
λ̂(tj−1 + τ |h)

]
. (5.24)

5.4. Joint Prediction Regions for the Arrival Times
and Marks

Working with a dataset D = { (hi, ei) }ni=1 where ei = (τi, ki), our aim is
to construct an informative, distribution-free bivariate joint prediction region
R̂τ,k(hn+1) ∈ R+×K for the pair (τn+1, kn+1) associated with a new test input
hn+1. This prediction region should satisfy finite-sample marginal coverage at
level 1 − α, as given by (5.1). Essentially, this involves generating a joint
prediction region for a bivariate response, which integrates a continuous and a
categorical variable, without relying on distributional assumptions.

In the following section, we will first explore a naive yet statistically sound
method that combines individual prediction regions for the event arrival time
and the mark, as outlined in Section 5.3. However, by neglecting potential
dependencies between these variables, this method can be overly conservative,
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resulting in large prediction regions which would not reflect the true underlying
uncertainty. A more effective strategy involves jointly predicting the event
arrival time and the mark, which will better reflect the true distribution of
these two variables. The associated joint prediction region can then exclude
unlikely combinations of the two, while still attaining the pre-specified coverage
level.

As discussed in Section 5.2, the body of literature on conformal prediction for
multi-response scenarios is limited, with notable contributions including Feld-
man et al. (2023) and Lei et al. (2013). However, Feldman et al. (2023) propose
a method centered on multi-output quantile regression for continuous random
vectors, which is not easily applicable in our context. Additionally, while Lei
et al. (2013) does present a density-based conformal method, it is not suited for
estimation problems involving covariates. Instead, we explore an adaptation of
the univariate HPD-split method (Izbicki et al., 2022) for bivariate responses.
This method enables us to construct highest density regions using the joint
predictive density of event arrival time and mark.

5.4.1 Combining Individual Conformal Prediction Regions

Let R̂τ (hn+1) ⊆ R+ and R̂k(hn+1) ⊆ K represent the prediction regions for
the arrival time τn+1 and the mark kn+1, respectively, for a new test input
hn+1, as described in Section 5.3. Based on Bonferroni correction, the nom-
inal coverage level for these two regions, specifically the right-hand side of
equations (5.2) and (5.3), is set to 1 − α/2. Then, the joint prediction re-
gion R̂τ,k(hn+1) = R̂τ (hn+1)× R̂k(hn+1) ⊆ R+ ×K for (τn+1, kn+1) obtained
by combining these two regions has coverage at least 1 − α. In fact, by the
union bound, we have:

P((τn+1, kn+1) ∈ R̂τ (hn+1)× R̂k(hn+1)) (5.25)

= P(τn+1 ∈ R̂τ (hn+1) ∩ kn+1 ∈ R̂k(hn+1)) (5.26)

= 1− P(τn+1 ̸∈ R̂τ (hn+1) ∪ kn+1 ̸∈ R̂k(hn+1))︸ ︷︷ ︸
≤α/2+α/2

(5.27)

≥ 1− α. (5.28)
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However, this method, which treats τ and k separately, can be overly conser-
vative, resulting in large and inflexible prediction regions. Indeed, the joint
prediction region generated by this approach yields equal length prediction
intervals for the arrival times across all selected marks, i.e.:

R̂τ,k(hn+1) = {(τ ′, k′)|τ ′ ∈ R̂τ (hn+1), k
′ ∈ R̂k(hn+1)} (5.29)

= {τ ′|τ ′ ∈ R̂τ (hn+1)} × {k′|k′ ∈ R̂k(hn+1)}. (5.30)

In other words, for each of the selected marks in R̂k(hn+1), the same prediction
interval is constructed for τn+1. In the following, we refer to this approach as
Conformal Independent (C-IND). Fig. 5.3a shows an example of such predic-
tion region, using CQR for the time and APS for the mark. First, the region
R̂τ (hn+1) is constructed for τn+1 at level 1 − α

2 (bottom of Fig. 5.3a) and
the region R̂k(hn+1) is constructed for kn+1, also at level 1 − α

2 (right side
of Fig. 5.3a). Finally, R̂τ,k(hn+1) is obtained by taking the cartesian product
between the two regions (middle of Fig. 5.3a).
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Figure 5.3: Example of joint bivariate prediction regions with α = 0.4 on a
synthetic example with τ ∈ R+ and marks K = {k1, k2, k3}.
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5.4.2 Conformal Highest Joint Density Regions

A better strategy for generating a joint prediction region for the arrival time
and the mark involves leveraging their joint distribution. By doing so, this
approach excludes unlikely combinations of the two variables, while achieving
the pre-specified coverage level. To accomplish this, we propose to compute
the HDR Hyndman (1996) with a nominal coverage level of 1 − α, based on
the joint density of the arrival time and mark. Let f̂(τ, k|hn+1) denote this
predictive joint density for a new test point hn+1. The HDR of f̂ with nominal
coverage level 1− α is defined as:

HDR(1− α|hn+1) =
{
(τ, k)

∣∣∣ f̂(τ, k|hn+1) ≥ z1−α

}
, (5.31)

where
z1−α = sup

{
z′
∣∣∣ P(f̂(τ, k|hn+1) ≥ z′) ≥ 1− α

}
. (5.32)

It is important to highlight that in cases where the underlying univariate dis-
tribution exhibits multimodality, an HDR approach will result in a union of
intervals that, collectively, are shorter in length than a single interval with the
same coverage level. Specifically, the oracle HDR has the useful property of
generating the smallest possible region that guarantees conditional coverage
(Hyndman, 1996).

Moreover, in contrast to the C-IND method outlined in the previous section,
an HDR approach can produce prediction regions for the arrival time that vary
in length across different selected marks. Specifically, the joint HDR can be
expressed as

R̂τ,k(hn+1) = HDR(1− α|hn+1), (5.33)

=
⋃

k′∈R̂k(hn+1)

{(τ ′, k′)|τ ′ ∈ R̂(k′)
τ (hn+1)}, (5.34)

where
R̂(k)

τ (hn+1) = {τ ′|f̂(τ ′, k|hn+1) ≥ z1−α}. (5.35)

and
R̂k(hn+1) = {k′|∃ τ ∈ R+ : f̂(τ, k′|hn+1) ≥ z1−α}. (5.36)

In simpler terms, R̂k(hn+1) encompasses all marks k ∈ K for which
f̂(τ, k|hn+1) exceeds z1−α over any non-zero interval in R+. Subsequently,
for each k′ ∈ R̂k(hn+1), R̂

(k)
τ (hn+1) contains the range of τ values where the

joint distribution f̂(τ, k|hn+1) surpasses the threshold z1−α. This shows that
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the HDR is capable of adapting to the joint distribution of the arrival time
and mark, leading to more tailored and potentially more efficient prediction
regions than (5.30).

Figure 5.3b illustrates the HDR for a simplified example with K =
{k1, k2, k3}. The various prediction sets constituting the HDR are as follows:
R̂k(hn+1) = {k1, k3}, referring to the selected marks; R̂(k1)

τ (hn+1) = [0.8, 2.6]

and R̂(k3)
τ (hn+1) = [0.8, 1.2]∪[2.5, 2.9], referring to the arrival time intervals as-

sociated to marks k1 and k3, respectively. Finally, R̂(k2)
τ (hn+1) = ∅, indicating

that mark k2 does not belong to the prediction region in this scenario.

Unfortunately, the heuristic joint prediction region presented in (5.34) does
not come with a finite-sample coverage guarantee. To address this, we modify
the nominal coverage level 1 − α of the HDR by using a generalization of
the univariate Highest Predictive Density (HPD)-split conformal procedure
(Izbicki et al., 2022). We refer to this approach as Conformal Highest Density
Regions (C-HDR).

Let q̂ ∈ [0, 1]. For a new test input hn+1, and as per the definition of HDR in
(5.31), it holds that

(τn+1, kn+1) ∈ HDR(q̂|hn+1) ⇐⇒ HPD(τn+1, kn+1|hn+1) ≤ q̂,

where
HPD(τ, k|h) =

∑
k′∈K

∫
{ τ ′ | f̂(τ ′,k′|h)≥f̂(τ,k|h) }

f̂(τ ′, k′|h)dτ,

effectively calculates the probability coverage of pairs (τ ′, k′) having a higher
density than (τ, k). The C-HDR method defines nonconformity scores based
on HPD values,

sHPD(h, (τ, k)) = HPD(τ, k|h), (5.37)

and returns a joint HDR with an adjusted nominal coverage level q̂, computed
as the 1− α empirical quantile of the sHPD scores evaluated on Dcal, i.e.

R̂τ,k(hn+1) = HDR(q̂|hn+1). (5.38)

Furthermore, the quantile lemma ensures that this prediction region verifies
the conformal guarantee at nominal level 1− α, i.e.

P((τn+1, kn+1) ∈ R̂τ,k(hn+1)) = P(sHPD(hn+1, (τn+1, kn+1)) ≤ q̂) ≥ 1− α.
(5.39)
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Moreover, if the estimator of f̂ is consistent (that is, it converges to the true f as
the sample size increases), the C-HDR nonconformity scores are approximately
independent of the input features, which leads to asymptotic conditional cov-
erage. That is, (5.9) will hold approximately if n is large (Izbicki et al., 2022,
Theorem 27). Moreover, under these assumptions, C-HDR will also converge
to the smallest prediction region that achieves conditional coverage of 1 − α
(Izbicki et al., 2022, Theorem 27).

5.5. Experiments

5.5.1 Datasets and Baselines

Datasets. We assess the validity and statistical efficiency of the prediction re-
gions produced by various CP methods, as detailed in Sections 5.3 and 5.4. We
base our evaluation on 8 real-world marked event sequence datasets that have
already been considered in Chapters 3 and 4. Specifically, we use LastFM
(Hidasi & Tikk, 2012) (records of people listening to songs), MOOC (Kumar
et al., 2019) (students’ actions on an online learning platform), Github (devel-
opers’ actions on Github) (Trivedi et al., 2019), Reddit (users’ actions of the
social platform Reddit) (Kumar et al., 2019), Retweets (Zhao et al., 2015)
(sequence of retweets following an initial tweet), Stack Overflow (badge re-
ceived by users on Stack Overflow) (Du et al., 2016), MIMIC2 (Du et al.,
2016) (electronic health records of patients), and Wikipedia (Kumar et al.,
2019) (sequences of edits to Wikipedia pages). For all datasets, we follow
the pre-processing steps described in the previous chapters. For a recap on
summary descriptions and dataset statistics, we refer the reader to Appendix
A.

In addition to the real-world data, we also create a synthetic Hawkes dataset
containing 14,408 sequences from a multi-dimensional Hawkes process with
exponential kernels using the parameters specified in Appendix A.2. For all
datasets (real and simulated), we randomly divided the sequences into training
(Dtrain), validation (Dval), calibration (Dcal), and test (Dtest) splits, in propor-
tions of 65%, 10%, 15%, and 10%, respectively. Finally, we want to point out
that the Github, MIMIC2, and Wikipedia datasets contain a short number
of sequences, which will amount to a limited number of observations in the
calibration and test splits.
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Neural MTPP models. We consider several neural MTPP models to esti-
mate the joint density of event arrival time and mark, represented as f̂(τ, k|h).
From these models, we will derive a heuristic-based measure of uncertainty.
Specifically, we consider as baselines LNM+ (Bosser & Ben Taieb, 2023b),
RMTPP (Du et al., 2016), FNN (Omi et al., 2019) and SAHP (Zhang et al.,
2020). Refer to Sections 3.1.3 and 4.4 for a reminder on their respective
parametrizations. For all models, we obtain an event representation by con-
catenating the sinusoidal encoding in (3.3) and the mark embedding in (3.5).
Finally, we generate a history representation h ∈ Rdh by sequentially process-
ing the events’ representations using the GRU encoder in (3.10).

5.5.2 Heuristic and Conformal Prediction Methods

We first focus on creating distinct univariate prediction regions for the event
arrival time and the event mark of new test inputs. This is achieved through the
application of conformal regression and classification techniques, as detailed in
Section 5.3. Additionally, we explore CP methods for constructing bivariate
prediction regions for both the event arrival time and its associated mark, as
described in Section 5.4. Finally, we also consider heuristic versions, which
correspond to non-conformal versions of these methods, by simply replacing
the model estimate in the corresponding oracle prediction region. We provide
a summary of these methods below.

Prediction regions for the event arrival time. We explore various meth-
ods to generate a prediction region for τn+1 of a test input hn+1, targeting
marginal coverage 1 − α. For the heuristic methods, the first baseline is
Heuristic Quantile Regression (H-QR), which constructs a symmetric inter-
val centered at the median:

R̂τ,H-QR(hn+1) = [Q̂τ (α/2|hn+1), Q̂τ (1− α/2|hn+1)]. (5.40)

The second baseline is Heuristic Quantile Regression Left (H-QRL), which
generates an asymmetrical interval with the left bound at zero:

R̂τ,H-QRL(hn+1) = [0, Q̂τ (1− α|hn+1)]. (5.41)

The third baseline is Heuristic Highest Density Regions (H-HDR) which forms
a HDR, i.e.

R̂τ,H-HDR(hn+1) = {τ |f̂(τ |hn+1) ≥ z1−α}, (5.42)
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where z1−α = sup
{
z′
∣∣∣ P(f̂(τ |hn+1) ≥ z′) ≥ 1− α

}
. Unlike the HDR defined

in (5.31) for a joint prediction on the time and mark, this method represents
a univariate HDR, specifically focusing on the arrival time.

We also consider conformal versions of these approaches, denoted as C-QR, C-
QRL, and C-HDR, with prediction regions defined in equations (5.12), (5.16),
and (5.38), respectively. Additionally, we analyze Conformal Constant (C-
CONST), a simple conformal baseline. Its nonconformity score is defined as
sC(h, τ) = τ and it generates prediction regions of the form R̂τ (hn+1) = [0, q̂],
independent of the model and history h, where q̂ is defined by the split-
conformal prediction algorithm in (5.5).

Prediction sets for the event mark. We explore various methods to gen-
erate a prediction set for kn+1 given a test input hn+1. The first baseline
methods, called Heuristic Adaptive Prediction Sets (H-APS) and Heuristic
Reguralized Adaptive Prediction Sets (H-RAPS), generate the following sets:

R̂k,H-APS(hn+1) =
{
k′ ∈ K : sAPS(hn+1, k

′) ≤ 1− α
}
, (5.43)

and

R̂k,H-RAPS(hn+1) =
{
k′ ∈ K : sRAPS(hn+1, k

′) ≤ 1− α
}
. (5.44)

For their conformal counterparts, we derive prediction regions as detailed in
(5.22) and the unregularized C-APS algorithm described in (Romano et al.,
2020). Recall that sAPS is recovered from sRAPS by setting γ = 0 in (5.20).
Additionally, we explore the Conformal Probability (C-PROB) baseline, intro-
duced in Sadinle et al. (2019). This baseline defines its nonconformity score in
terms of the estimated probability mass function over the mark:

sC-PROB(h, k) = 1− p̂(k|h), (5.45)

which yields the following prediction region after computing q̂ with the split-
conformal prediction algorithm (5.5):

R̂k,C-PROB(hn+1) =
{
k′ ∈ K : p̂(k′

∣∣ h) ≥ 1− q̂
}
. (5.46)

Moreover, to avoid generating empty prediction sets, the mark associated to
the highest estimated probability is systematically included for all methods
that we consider, namely H-APS, H-RAPS, C-PROB, C-APS and C-RAPS.
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Bivariate prediction regions for the arrival time and mark. We explore
two methodologies to construct a bivariate prediction region, R̂τ,k(hn+1), for
the pair (τn+1, kn+1). The first method combines individual univariate pre-
diction regions, as detailed in Section 5.4.1. For this method, we develop two
variants, each based on the specific construction of R̂τ (hn+1) and R̂k(hn+1).
The first variant, C-QRL-RAPS, combines C-QRL for R̂τ (hn+1) and C-RAPS
for R̂k(hn+1). The second variant, C-HDR-RAPS, uses C-HDR for R̂τ (hn+1),
while still employing C-RAPS for R̂k(hn+1). The second method generates
joint HDR regions, as described in Section 5.4.2. In parallel, we also examine
their heuristic counterparts, referred to as H-QRL-RAPS, H-HDR-RAPS, and
H-HDR, respectively.

5.5.3 Experimental Setup

Consistently with previous chapters, each model is trained by minimizing
the average NLL in (4.1) across training sequences contained in Dtrain. For
optimization, we use mini-batch gradient descent with the Adam optimizer
(Kingma & Ba, 2014) and a learning rate of η = 10−3. The models are trained
for at most 500 epochs, and training is interrupted through an early-stopping
procedure if there is no improvement in NLL on the validation dataset Dval
for 100 consecutive epochs. In such instances, the model’s parameters revert
to the state where the validation loss was lowest.

With a trained MTPP model, we are able to calculate the necessary prediction
functions for computing prediction regions, as described in Section 5.5.2, for
all test inputs within Dtest. For the CP methods, the non-conformity scores
are computed on Dcal. To compute individual prediction regions for the arrival
time and the mark, it’s essential to compute the predictive marginals, f̂(τ |h)
and p̂(k|h), respectively.

To derive f̂(τ |h), we sum over the joint density for each mark, as follows:
f̂(τ |h) =

∑K
k=1 f̂(τ, k|h). Meanwhile, p̂(k|h) is approximated through inte-

gration over the positive real line:

p̂(k|h) =
∫
R+

f̂(s, k|hn+1)ds = Eτ [p̂(k|τ,h)] ≃
1

N

N∑
s=1

p̂(k|τs,h), (5.47)

where N = 100 samples τs are generated from f̂(τ |h). This sampling is
achieved with the inverse transform sampling method described in Section
2.1.4 from a binary search algorithm.
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5.5.4 Evaluation Metrics

We assess the prediction regions R̂y(hi), generated for every input hi ∈ Dtest,
using metrics that quantify the probability coverage and the length of each
region. The empirical Marginal Coverage (MC) is calculated as

MC = P̂Dtest

(
yi ∈ R̂y(hi)

)
=

1

|Dtest|

|Dtest|∑
i=1

1

[
yi ∈ R̂y(hi)

]
. (5.48)

Essentially, this metric calculates the proportion of instances where R̂y(hi)
contains yi across all observations in Dtest. The average length of the prediction
regions is computed as

Length =
1

|Dtest|

|Dtest|∑
i=1

|R̂y(hi)|, (5.49)

where | · | denotes the length of a region. Specifically, for univariate prediction
regions, if y = τ , | · | represents the length of prediction intervals or the
cumulative length in the case of union of intervals. When y = k, it is the
cardinality of the discrete prediction set. For bivariate prediction regions,
where y = (τ, k), the calculation differs based on the method. For naive
prediction regions as defined in (5.30), the length is given by

|R̂τ,k(hi)| = |R̂τ (hi)| ∗ |R̂k(hi)|.

For the bivariate HDRs as defined in (5.34), the length is calculated as:

|R̂τ,k(hi)| =
∑

k′∈R̂k(hi))

|R̂(k′)
τ (hi))|.

We also consider the geometric mean of the lengths computed on Dtest as

G. Length =
1

|Dtest|

|Dtest|∑
i=1

log(|R̂y(hi)|+ ϵ), (5.50)

where ϵ is an offset that we fix at ϵ = 0.01 to avoid values of −∞ when
|R̂y(hi)| = 0. For a better comparison, when comparing a set of M conformal
methods with average lengths L1, . . . , LM , we report the relative length of the
ith method as:

R. Length =
Li

minj∈{ 1,...,M } Lj
.
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We also consider an approximate measure of conditional coverage using the
Worst Slab Coverage (WSC) metric, as introduced in Cauchois et al. (2021).
The WSC metric evaluates the lowest coverage across all slabs v ∈ Rdh , each
containing at least a proportion δ of the total mass, where 0 < δ ≤ 1. Given
v ∈ Rdh , WSCv is defined as follows:

WSCv =inf
a<b

{
P̂Dtest

(
yi ∈ R̂y(hi)| a ≤ v⊺hi ≤ b

)
s.t. P̂Dtest(a ≤ v⊺hi ≤ b) ≥ δ

}
, (5.51)

where a, b ∈ R. This quantity assesses the conditional coverage by conditioning
on the history encodings hi which have a certain level of similarity with the
slab v where the similarity is measured by the dot product v⊺hi. To estimate
the worst slab, we follow Cauchois et al. (2021) and draw 1000 samples vj ∈ Rd

uniformly in the simplex Sd−1 and compute the slab with minimum conditional
coverage as:

WSC = min
vj∈Sd−1

WSCvj . (5.52)

In practice, to avoid biases due to overfitting on the test dataset, we follow
Romano et al. (2020); Sesia & Romano (2021) and first divide the test set in
two parts Dtest = D(1)

test ∪ D(2)
test. Then, we compute the worst combination of

a, b and v on D(1)
test according to the minimum WSC(hi) metric with δ = 0.21,

and evaluate conditional coverage on D(2)
test.

We further assess (approximate) conditional calibration using the input space
partitioning approach from the CD-split+ method detailed in Izbicki et al.
(2022), which we call Conditional Coverage Error (CCE). Instead of the
Cramér–von Mises distance, we consider the 2-Wasserstein distance, which we
estimate via samples. Let Z represent the random variable corresponding to
the HPD values. The 2-Wasserstein distance, comparing two random variables
with quantile function F−1

Z (· | ha) and F−1
Z (· | hb), is expressed as:

dZ(ha,hb) =

(∫ 1

0

∣∣F−1
Z (s | ha)− F−1

Z (s | hb)
∣∣2 ds) 1

2

. (5.53)

In practice, we approximate this distance by generating two samples
Z

(a)
1 , . . . , Z

(a)
m and Z

(b)
1 , . . . , Z

(b)
m , each with m observations conditional on ha

and hb, respectively. Based on the observation that the order statistic Z(i) of

1This is the default value employed by the authors in Cauchois et al. (2020).
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a sample Z1, . . . , Zm approximates the quantile function F−1
Z

(
i

m+1

)
, we can

approximate dZ(ha,hb) using

dZ(ha,hb) ≃

(
m∑
i=1

∣∣∣Z(a)
(i) − Z

(b)
(i) )
∣∣∣2) 1

2

. (5.54)

Using this distance function, we calculate centroids C1, . . . , CJ ∈ Rdh by ap-
plying the k-means++ clustering algorithm on Dcal. Then, we consider a
partition A of Rdh defined as h ∈ Aj if and only if dZ(h, Cj) < dZ(h, Ck) for
every k ̸= j.

In Appendix E.6, we show that we have to further adapt the distance function
from dZ to dlogZ since distributions with the longest tails exhibit extreme
distances from other distributions, often resulting in their isolation into small
clusters. By focusing on the random variable logZ instead of Z, we achieve
more balanced cluster sizes, which is crucial for enhancing the accuracy of
conditional coverage estimation. In our experiments, we additionally use J = 4
centroids to ensure an accurate estimation of conditional coverage per cluster.
Finally, the CCE is defined as:

CCE =
1

|Dtest|

|Dtest|∑
i=1

J∑
j=1

(
P̂Dtest

(
yi ∈ R̂y(hi)

∣∣∣ hi ∈ Aj

)
− (1− α)

)2
. (5.55)

Ideally, the MC and WSC metrics should align with the nominal coverage
1 − α = 0.8, while the relative length, geometric length, and CCE metrics
should be minimized.

5.5.5 Results and Discussion

We first detail the results for individual prediction regions for the arrival time
and the mark in Sections 5.5.5.1 and 5.5.5.2, respectively. Subsequently, the
results for the joint prediction regions are presented in Section 5.5.5.3. Our
primary focus is on a probability miscoverage level of α = 0.2. Following this,
we show the results at various other coverage levels in Section 5.5.5.4. In this
section, we focus on the neural MTPP model LNM+, and on the real-world
datasets LastFM, MOOC, Retweets, Reddit, and Stack Overflow. Additional
results for the other neural MTPP models, as well as results on the smaller
and synthetic Hawkes datasets of Section 5.5.1, are provided in Section E.1
with similar conclusions.
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5.5.5.1 Prediction Regions for the Arrival Time

In Figure 5.4, the results are systematically organized in a table where each
row represents a specific metric, as detailed in Section 5.5.4, and each column
corresponds to one of the datasets. This figure gives the results for various
methods, described in Section 5.5.2, that are used to generate prediction re-
gions solely for the arrival time. Each heuristic method and its corresponding
conformal counterpart are represented in matching colors. To differentiate
them, the heuristic methods are marked with hatching patterns.

The first row of the figure demonstrates that all CP methods attain the desired
marginal coverage. In contrast, heuristic methods generally undercover, which
aligns with expectations. The second row focuses on the average length of
the prediction regions. Here, it is evident that heuristic methods generate
smaller regions compared to their conformal counterparts. While this might
seem beneficial, it is important to note that these smaller regions result from
undercoverage, which diminishes their practical utility.

Among the heuristic methods, H-HDR consistently produces regions of smaller
or equal lengths compared to H-QR and H-QRL for each prediction instance.
Consequently, H-HDR emerges as the method with the smallest average region
length. H-QR, not adjusting adequately to the right-skewed nature of the
distributions, tends to yield larger regions.

Focusing now on the conformal methods, we exclude heuristic methods from
this analysis due to their inability to achieve marginal coverage, which can lead
to arbitrarily small regions. In the second row, the variations in average region
length among CP methods differ across datasets. Notably, C-HDR, unlike
its heuristic counterpart H-HDR, often yields larger average region lengths,
especially in the LastFM, MOOC, and Retweets datasets. This difference
arises because C-HDR adjusts the initial H-HDR prediction regions adaptively
based on the individual predictive distributions. In contrast, C-QR and C-QRL
modify their respective heuristic initial regions by a constant amount. While C-
Const generates identical regions regardless of the history h, it occasionally has
the smallest average region length while still maintaining marginal coverage.
This occurs because C-Const does not tailor its regions to account for extreme
right-skewed distributions, leading to regions that are either slightly larger
or significantly smaller compared to other conformal methods. These two
phenomena are exemplified in a toy example shown in Fig. 5.5.

This figure demonstrates a scenario where the average region length of C-HDR
is larger than that of other conformal methods in inter-arrival time prediction.
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Figure 5.4: Performance of different methods producing a region for the time
on real world datasets using the LNM+ model. Heuristic methods are hatched.
Ideally, the MC and WSC metrics should align with the nominal coverage 1−
α = 0.8, while the relative length (R. Length), geometric length (G. Length),
and CCE metrics should be minimized.

The first row shows predictive distributions in blue and their corresponding
realizations as dashed lines, based on three observations from a calibration
dataset. In the second row, the prediction regions for seven methods are de-
picted with α = 0.5. All heuristic methods underperform, achieving a max-
imum coverage of only 1/3, which is less than the desired coverage of 0.5.
Conformal prediction methods, in response, adjust their prediction regions to
achieve coverage in at least two out of three cases. Despite H-HDR always pro-
ducing shorter or equivalent lengths compared to H-QR and H-QRL, C-HDR
generates larger regions on average than other conformal methods. Again, C-
Const, which does not adapt to individual predictive distributions, presents
the smallest average regions among the conformal methods in this particular
example. C-Const however does not achieve conditional coverage even asymp-
totically.

Returning to Figure 5.4, the third row introduces an alternative aggregation
method for region lengths – the geometric mean. This method assigns less
weight to larger regions and more to smaller ones. Here, C-HDR’s performance
is more in line with other conformal methods, indicating that average region
length might not be a reliable metric, particularly in cases of high variability
in conditional distributions.
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Figure 5.5: The figure showcases predictive distributions (blue) and realizations
(dashed lines) in the first row, based on a calibration dataset. The second row
illustrates prediction regions for various methods with α = 0.5. It highlights
the undercoverage of heuristic methods, the adaptive adjustments of confor-
mal methods, and the notable differences between C-HDR and other methods
in terms of region size. We provide an additional example with α = 0.2 in
Section E.4.

The fourth and fifth rows of the figure assess conditional coverage. WSC
denotes coverage over the worst slab, with methods closer to 1 − α being
preferable, whereas CCE represents a conditional coverage error, which should
be minimized. Conformal methods, already proficient in achieving marginal
coverage, exhibit a conditional coverage that is usually better than heuristic
methods based on the evaluated metrics. Methods capable of tailoring predic-
tion regions to specific instances are expected to exhibit enhanced conditional
coverage. Although the WSC metric reveals no marked distinction among con-
formal methods, the CCE metric shows that C-HDR frequently attains one of
the highest levels of conditional coverage. Moreover, C-QR often outperforms
C-QRL in conditional coverage. As anticipated, the CCE metric reveals that
C-Const generally exhibits the poorest conditional coverage, attributable to
its lack of adaptability.

5.5.5.2 Prediction Regions for the Mark

Figure 5.6 presents similar metrics as in Figure 5.4, but focuses on methods
that generate prediction sets exclusively for the mark. Here, the heuristic
methods H-APS and H-RAPS already meet the marginal coverage criteria,
meaning that conformal prediction primarily offers theoretical backing rather
than significant changes in predictions.

Turning our attention to the conformal methods, these methods show similar
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Figure 5.6: Performance of different methods producing a region for the mark
on real world datasets using the LNM+ model. Heuristic methods are hatched.
Ideally, the MC and WSC metrics should align with the nominal coverage
1− α = 0.8, while the length and CCE metrics should be minimized.

region lengths across all datasets, with the exception of Reddit, where C-
PROB exhibits smaller region lengths. However, on this same dataset and
on Stack Overflow, C-PROB has a poor conditional coverage compared to
both other conformal methods and heuristic methods. This reflects similar
findings discussed in Section 5.5.5.1, where the method C-Const manages to
attain short prediction regions, albeit with weak conditional coverage. This is
explained by the fact that, in contrast to C-APS, C-PROB does not achieve
conditional coverage asymptotically.

5.5.5.3 Joint Prediction Regions for the Arrival Time and the Mark

Figure 5.7 displays the same metrics as Figures 5.4 and 5.6, but it specifically
focuses on methods that generate bivariate prediction sets for both the arrival
time and the mark. Recall that we consider two main approaches. The first
combines individual prediction regions, as detailed in Section 5.4.1. Under this
approach, we examine two variants: QRL-RAPS, which merges QRL for time
with RAPS for the mark, and HDR-RAPS, which combines HDR for time with
RAPS for the mark. The second approach, outlined in Section 5.4.2, directly
creates a bivariate prediction region. Conformal versions of these methods are
also considered in our analysis.

In the first row, we see that conformal methods successfully achieve marginal
coverage, whereas heuristic methods tend to undercover. This observation mir-
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Figure 5.7: Performance of different methods producing a joint region for the
time and mark on real world datasets using the LNM+ model. Heuristic
methods are hatched. Ideally, the MC and WSC metrics should align with the
nominal coverage 1−α = 0.8, while the relative length (R. Length), geometric
length (G. Length), and CCE metrics should be minimized.

rors the findings in the context of inter-arrival time prediction, as detailed in
Section 5.5.5.1. The second row focuses on the average region length. Here,
C-HDR-RAPS tends to produce larger regions on average compared to C-
QRL-RAPS, consistent with the explanations provided in Section 5.5.5.1 and
Fig. 5.5. Notably, C-HDR shows competitive average region lengths, outper-
forming C-HDR-RAPS. This highlights the benefit of creating joint regions
that account for the interdependence between time and mark. In the third
row, C-HDR stands out as the most effective on each dataset when using
the geometric mean to average region lengths. The last two rows illustrate
that conformal methods attain better conditional coverage than their heuristic
counterparts, echoing the results observed in Section 5.5.5.1. C-HDR obtains
a competitive conditional coverage, especially on the dataset Reddit.

For illustration, Figure 5.8 gives examples of naive bivariate prediction regions
generated by C-QRL-RAPS and C-HDR-RAPS, as well as a bivariate highest
density region using C-HDR. We can see that the naive approaches produce
constant size intervals for each of the marks selected by the C-RAPS approach.
Conversely, C-HDR is able to generate variable-length prediction intervals for
each mark by taking the inter-dependencies between the two variables into
account.



158 Distribution-Free Conformal Prediction Regions for Neural MTPP Models

0.6 0.7 0.8 0.9 1.0
0

6

12

18

24

30

36

42

48
C-QRL-RAPS

0.6 0.7 0.8 0.9 1.0
t

0

6

12

18

24

30

36

42

48
C-HDR-RAPS

0.6 0.7 0.8 0.9 1.0
0

6

12

18

24

30

36

42

48
C-HDR

kkk

Figure 5.8: Examples of prediction regions generated by LNM+ using the C-
QRL-RAPS, C-HDR-RAPS, and C-HDR methods for the last event of a test
sequence of the LastFM dataset. The black star corresponds to the actual
observed event.

5.5.5.4 Empirical Coverage for Different Coverage Levels

Fig. 5.9 shows the marginal coverage achieved by various methods generating
joint prediction regions for both the arrival time and mark. This figure extends
the analysis beyond the specific miscoverage level of α = 0.2, as shown in the
first row of Fig. 5.7, by including a range of coverage levels.

It is evident that heuristic methods generally underperform at all coverage
levels, with this tendency becoming more pronounced at higher coverage levels.
Conversely, conformal methods that construct individual predictions (outlined
in Section Section 5.4.1) often overcover, particularly at lower coverage levels,
due to their inherent conservativeness. Notably, C-HDR strikes an appropriate
balance, maintaining the correct level of conservativeness across the various
coverage levels. In Appendix E.3, we provide additional results for the coverage
per level in the context of prediction regions for the time or for the mark.

5.6. Conclusion and Future Work

By integrating the methodologies of conformal prediction and neural MTPP
models, we have established a more robust approach to uncertainty quantifica-
tion in MTPPs. This is achieved by creating distribution-free joint prediction
regions for the arrival time and its associated mark. The main challenge is to
handle both a strictly positive, continuous response and a categorical response
without distributional assumptions. We have also explored independently gen-
erating univariate prediction regions for the arrival time and the mark.
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Figure 5.9: Empirical marginal coverage for different coverage levels with the
LNM+ model. All conformal methods achieve marginal coverage but the naive
method tends to overcover, especially for small coverage levels. The heuristic
methods do not achieve coverage in most cases.

Our experiments highlight the importance of using conformal inference to en-
sure finite-sample marginal coverage. Indeed, heuristic methods tend to un-
dercover in cases involving the prediction of arrival time or the simultaneous
prediction of both arrival time and marks, with occasional success in predicting
marks alone.

We also emphasize the significance of choosing appropriate conformal scores.
C-HDR and C-QR show good conditional coverage, unlike C-Const, which lacks
adaptability. The non-adaptive nature of C-Const leads to shorter average
region lengths, which may appear advantageous at first glance. The same
holds for C-PROB.

Our analysis underscores the importance of considering interdependence. In-
deed, C-HDR, our extension of HPD-split (Izbicki et al., 2022) to bivariate
outputs, outperforms C-HDR-RAPS. The superiority of C-HDR stems from
its incorporation of joint regions that effectively consider and account for in-
terdependence, whereas C-HDR-RAPS, in contrast, simplistically combines
individual prediction regions through Bonferroni adjustments.

While this chapter focuses on the problem of MTPP, the techniques presented
here, especially those involving C-HDR, have the potential to extend to other
prediction problems where the target variable is a vector comprising a combi-
nation of continuous and categorical variables. To the best of our knowledge,
this is the first time such prediction regions are explored in the context of
conformal prediction.
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Sequences of marked events occurring in continuous time are prevalent across
various application domains, ranging from social media activity and healthcare
records to financial transactions and earthquake occurrences. Neural MTPP
models leverage the flexibility of neural networks to model these event se-
quences, offering a structured approach to predict how systems will evolve over
time. Since its introduction, the field of neural MTPP modeling has experi-
enced rapid advancements, resulting in the development of numerous neural
architectures that have been successfully applied to a wide range of real-world
problems.

Despite its success, the field of neural MTPP modeling still faces some lim-
itations, including inconsistent experimental setups across studies, optimiza-
tion challenges that may impede model predictive performance, and unreliable
prediction regions that cannot accurately capture the true uncertainty in the
model predictions. In this thesis, we proposed to address these concerns by
making three main contributions. First, we introduce novel neural MTPP mod-
els for probabilistic predictive modeling of continuous-time event data. Second,
we present new training strategies for neural MTPP models designed to im-
prove their predictive accuracy on the time and mark prediction tasks. Third,
we develop reliable and distribution-free conformal methods for quantifying
the uncertainty in the predictions extracted from neural MTPP models.

In this concluding chapter, we summarize these key contributions, and sug-
gest potential directions for future work in the rapidly evolving field of neural
MTPP modeling.

6.1. Summary of Contributions

A neural MTPP model is a structured combination of different architectural
components, each tailored to capture different aspects of event sequences. To
improve over existing baselines, new models generally propose alternatives to
all these components simultaneously, making it challenging to identify the real
sources of gains in predictive accuracy. More importantly, these new models of-
ten rely on different experimental setups, datasets and baselines for evaluation,
which renders a fair comparison even harder (Shchur et al., 2021b).

To address this limitation, we conducted in Chapter 3 a large-scale experi-
mental study of state-of-the-art neural MTPP models including 16 real-world
and synthetic event sequence datasets. Specifically, our study reviewed in
a unified experimental setup the influence of each main architectural com-
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ponent on predictive accuracy, and highlighted that some specific combina-
tions of components can lead to significant improvements for both time and
mark prediction tasks. In particular, our results revealed that self-attentive
encoders required vectorial representations of time to demonstrate competi-
tive performance with their recurrent counterparts. Also, we found that log-
transformations of (inter)-arrival times are generally beneficial to most de-
coders in achieving good performance on the time prediction task.

Another important concept introduced in Chapter 3 relates to the probabilistic
calibration of neural MTPP models. While calibration has been extensively
discussed in the forecasting literature as a desirable property that any compo-
nent forecaster should possess (Gneiting et al., 2007; Gneiting & Resin, 2023;
Dheur & Ben Taieb, 2023), it received little attention from the neural MTPP
community. We filled this gap by assessing the probabilistic calibration of neu-
ral MTPP models, which shed light on an important limitation: while the time
predictive distributions are generally well calibrated, most neural MTPP mod-
els often show poor calibration for the mark predictive distributions. Overall,
our experiments revealed that neural MTPP models show suboptimal results
on the mark prediction task, sometimes being outperformed by simpler classi-
cal baselines.

Finally, we studied the impact of history size on model performance, and high-
lighted that solely encoding a few of the last observed events often resulted in
comparable performance to encoding the full available history. This observa-
tion raises questions about whether some commonly used benchmark datasets
are truly appropriate for the evaluation of neural MTPP models, or if alterna-
tive encoder architectures are required to capture long-term dependencies in
event sequences.

The limitations of modern neural MTPP models with respect to the mark
prediction task outlined in Chapter 4 motivated an investigation into the un-
derlying causes of the problem. For some parametrizations, unsatisfactory
performance in mark predictive accuracy can be directly attributed to specific
design choices. For instance, LNM (Shchur et al., 2020a) and RMTPP (Du
et al., 2016) make the explicit assumption of conditional independence between
arrival times and marks. In Chapter 4, we have seen that relaxing this assump-
tion by parametrizing the conditional PMF of marks as explicitly dependent
on time led to improved performance on the mark prediction task.
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Nonetheless, most neural MTPP parametrizations already take into account
inter-dependencies between arrival times and marks, which suggested that this
limitation was more deeply rooted into model training. In Chapter 4, we
showed that learning a neural MTPP model can be interpreted as a two-task
learning problem. Specifically, one task is focused on learning a time predictive
distribution, while the other concerns learning a mark predictive distribution.
Typically, these two tasks are optimized jointly on a common set of shared
parameters. We demonstrated that this parameter sharing can lead to the
emergence of conflicting gradients during training, often resulting in degraded
performance on each individual task.

To prevent the emergence of conflicts during optimization, we introduced
novel parametrizations of neural MTPP models, enabling disjoint modeling
and training of the time and mark prediction tasks. Inspired from the suc-
cess of (Shi et al., 2023), our framework allows to prevent gradient conflicts
from the root while maintaining the flexibility of the original parametrizations.
Our experiments proved that training neural MTPP models within our frame-
work effectively prevented the occurrence of conflicts during optimization. We
showed that this in turn lead to improved predictive accuracy and calibration
compared to the original model formulations, especially in the context of the
mark prediction task.

However, improved predictive accuracy does not guarantee that the trained
model is a good approximation of the underlying unknown process. Conse-
quently, prediction regions extracted directly from the model may be unreli-
able, failing to faithfully reflect on the true uncertainty in the predictions. In
Chapter 5, we addressed this limitation by leveraging the sound framework of
Conformal Predictions (CP) (Vovk et al., 2005), enabling the construction of
reliable prediction regions that satisfy finite-sample coverage guarantees even
when the base model is unreliable.

We first explored a naive method that combined individual prediction regions
for events inter-arrival times and marks through Bonferroni adjustments. De-
spite offering finite-sample coverage guarantees, our results showed that this
simple approach is highly conservative, often leading to large and inflexible
prediction regions. We then set our attention to developing a more effective
strategy that would take inter-dependencies between arrival times and marks
into consideration. We proposed an extension of the HPD-Split approach of
Izbicki et al. (2022), called C-HDR, based on bivariate HDR. Specifically, C-
HDR generates predictions regions directly from the joint predictive density
of inter-arrival times and marks, thereby explicitly taking dependencies into
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account. By excluding unlikely combinations of the two variables, this method
proved to generate tighter joint prediction regions for arrival times and marks
compared to the naive approach, while maintaining the desired coverage level.

Finally, we relied on approximate notions of conditional coverage to evaluate
the quality of the generated prediction regions. Notably, our results revealed
that a key factor to achieve good conditional coverage stemmed from the adap-
tivity of an approach to its input, further highlighting the benefits of C-HDR
compared to simplistic, non-adaptive baselines.

6.2. Limitations and Future Work

The contributions presented in this dissertation aimed to deepen our under-
standing of the factors that hinder predictive accuracy in modern neural MTPP
models, while also being a step forward in the development of more robust
strategies to quantify the uncertainty of their predictions. Despite progress
being made in this direction, we acknowledge that our work faces some lim-
itations that deserve further investigation. In this section, we discuss such
limitations and delve into several promising research directions that warrant
future exploration.

The large scale experimental study conducted in Chapter 3 includes 15 real-
world event sequence datasets from the neural MTPP literature. Nonetheless,
one could consider including additional relevant datasets in the study, such as
Reddit (Kumar et al., 2019), Financial Transactions (Du et al., 2016), Ama-
zon (Ni et al., 2019), or Euro Email (Mei et al., 2020). The inclusion of these
datasets could increase the power of the statistical comparisons conducted in
Section (3.4), ultimately leading to more pronounced statistical differences be-
tween models. Additionally, a direct extension of our work could consider using
versions of these datasets that were not filtered to their 50 most represented
marks, enabling to assess the predictive accuracy of neural MTPP models in
high-mark settings.

On a related note, the datasets mentioned in this dissertation have been used
as the default benchmarks to evaluate the predictive accuracy of neural MTPP
models since the early stages of the field. Consequently, it is not clear whether
empirical gains over existing baselines stem from real progress in the field, or
whether it is merely a byproduct of model overfitting. Moreover, as discussed
in Shchur (2022), these datasets are not always derived from critical real-world
applications that motivate the deployment of neural MTPP models, such as
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earthquake modeling or preventive medicine. We support their argument and
invite future research to design high-quality and application-driven datasets
for the evaluation of neural MTPP models, mirroring the standard bench-
marks available in neighboring machine learning fields, such as ImageNet (Deng
et al., 2009) in computer vision, or General Language Understanding Evalua-
tion (GLUE) (Wang et al., 2018) in NLP. The suspicion raised by Enguehard
et al. (2020) regarding the potential inappropriateness of some commonly used
dataset, which was confirmed in our experiments, further points in that direc-
tion. Nonetheless, this challenge should not be too difficult to address in future
works. For instance, the Github dataset considered in the dissertation contains
a relatively short number of sequences, and is now outdated given the contin-
uous growth of the code hosting platform since 2013 (GitHub, 2024). Hence,
querying a larger and up to date Github dataset could serve as an appropriate
high quality benchmark for the evaluation of neural MTPP models.

This analysis could also benefit from the inclusion of additional neural MTPP
baselines, such as Attentive Neural Hawkes (A-NH) (Yang et al., 2022), Weib-
Mix (Marin et al., 2005; Lin et al., 2021) or STHP (Li et al., 2023). In this con-
text, since simple logarithmic transformations of inter-arrival times have shown
to benefit most MLP decoders, it may be worthwhile to explore a broader range
of related transformations, such as the Box-Cox transformation (Box & Cox,
1964). Additionally, predictive performance of neural MTPP models with re-
spect to the time and mark prediction tasks was mainly evaluated using NLL
scores and calibration measures. While these metrics enabled us to assess the
entire predictive distributions, an extension of our experimental study could
include more directly interpretable metrics, such as accuracy in event mark
prediction, or MAE in event time prediction. Note that these point prediction
metrics were subsequently considered in Chapter 4.

In this dissertation, we exclusively focused on the notions of probabilistic cal-
ibration and top-label calibration to quantify the reliability of the time and
mark predictive distributions. While these notions have been extensively dis-
cussed (Naeini et al., 2015; Guo et al., 2017; Kuleshov et al., 2018; Laves et al.,
2019; Dheur & Ben Taieb, 2023) as properties that any competent forecaster
should possess, stronger notions of calibration have emerged in the literature
to assess predictive distributions. As discussed in Gneiting & Resin (2023),
probabilistic calibration mainly involves unconditional aspects of predictive
performance and is implicitly implied by conditional notions such as distribu-
tion calibration (Song et al., 2019; Kuleshov & Deshpande, 2022), conditional
exceedance calibration (Mason et al., 2007), threshold calibration (Henzi et al.,
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2021), and auto-calibration (Tsyplakov, 2013) being the strongest notion. Sim-
ilarly, in the context of classification tasks, we may also require the predictive
PMF to be calibrated with respect to all predicted probabilities, and not only
the one associated to the top label (Zadrozny & Elkan, 2002; Vaicenavicius
et al., 2019). We believe that exploring the calibration of modern neural MTPP
models within the context of these stronger aspects constitutes an important
avenue of future research.

In Chapter 3, our experiments suggested that current RNN and self-attentive
history encoders struggle at efficiently capturing long-term dependencies be-
tween event occurrences, motivating the design of alternative architectures.
A promising advance in the neighboring field of sequence modeling relates to
Deep Discrete-time State Space Models (DDSM) (Gu et al., 2022a,b; Gupta
et al., 2022; Hasani et al., 2023). In a DDSSM, outputs are parametrized as the
discretization of a continuous-time state space model that specifies the relation
between an output signal and a latent space function of the input. Under care-
ful initialization of the state matrices, DDSSM have demonstrated impressive
performance on tasks from the Long Range Arena (LRA) (Tay et al., 2020),
a benchmark that requires reasoning over long-context scenarios. Relatedly,
(Orvieto et al., 2023) recently showed that the performance and efficiency of
DDSSM over long-term reasoning tasks can be matched by classical RNNs
after applying a series of small modifications to their architectures. Integrat-
ing these architectures into the design of novel neural MTPP models could
facilitate the capture of long-term inter-dependencies between events, hereby
improving downstream predictive performance.

From an applied perspective, an exciting application of MTPP models arise
in the context of intermittent demand forecasting (Boylan & Syntetos, 2021),
where demand occurrences materialize as sporadic and lumpy time series over
time, i.e. containing few and highly variable observations. These sequences
bear evident resemblance with the realization of a MTPP, where events occur
with irregularly-spaced intervals. While intermittent demand forecasting has
been extensively studied in the times series literature (Croston, 1972; Wille-
main et al., 2004; Kourentzes, 2013; Karthikeswaren et al., 2021), the problem
received less attention from the MTPP community. A notable exception relates
to the work of Türkmen et al. (2021), which draws a parallel between the two
domains, and proposes an approach based on neural renewal point processes.
However, the field of MTPP modeling has witnessed significant development
in the meantime, warranting the exploration of how recent approaches could
be adapted to this context.
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In Chapter 4, we tackled the challenge of conflicting gradients by introducing
novel parametrizations of neural MTPP models that enabled disjoint mod-
eling and training of the time and mark prediction tasks. Within the multi-
task learning literature, our methodology relates most to branched architecture
search approaches (Guo et al., 2020; Shi et al., 2023), where shared network
layers between tasks are separated when their joint training impedes perfor-
mance. However, other approaches have been proposed to handle negative
transfer in multi-task learning, with a prominent line of work being gradient
surgery methods, where conflicts are mitigated by direct manipulation of the
tasks’ gradients. Examples of gradient surgery approaches include homogeniz-
ing gradients magnitude (Chen et al., 2018) or direction (Javaloy & Valera,
2022), using their projections onto the normal plane as update rule (Yu et al.,
2020), or randomly dropping updates based on conflict (Chen et al., 2020). Al-
though gradient surgery approaches have been criticized by (Shi et al., 2023)
across a selection of computer vision tasks, their effectiveness in the context of
neural MTPP models training remains unexplored.

Moreover, our analysis concerned neural MTPP models trained on the NLL
objective. As mentioned in Section 2.1.3, alternatives to the LogScore that
are specifically tailored to the predictive distributions of inter-arrival times
and marks can be considered for model training. For instance, the CRPS can
be employed to evaluate the predictive distribution of inter-arrival times as
done in Ben Taieb (2022), while the Brier score and the spherical score can
be employed to evaluate either predictive distributions (Gneiting & Raftery,
2007). Investigating how task gradients interact in the context of alternative
scoring rules, and whether their influence remains detrimental to the learning
of each individual task, is an interesting direction of future work.

Our analysis conducted in Chapter 5 constitutes a first step towards the de-
ployment of distribution-free conformal approaches in the context of neural
MTPP models. However, given the inherent dependencies between event oc-
currences, our study focused on building prediction regions for the last event
of a sequence. Consequently, extending our approach to generate predictions
regions that take these dependencies into account constitutes an important
direction of future research.

In the related field of time series forecasting, conformal methods can be clas-
sified into two main categories based on the setting on which they operate.
Single-series approaches aim to generate prediction regions for new values based
on past observations within a specific series, circumventing strict exchangeabil-
ity assumptions by either dynamically adapting the coverage level (Gibbs &
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Candès, 2021; Zaffran et al., 2022) or the quantile of the scores (Xu & Xie,
2021, 2023b). For multi-series, conformal approaches typically leverage the ex-
changeability of series to generate prediction regions that attain simultaneous
coverage over entirely new trajectories (Stankeviciute et al., 2021; Yu et al.,
2023; Cleaveland et al., 2024; Zhou et al., 2024). A direct parallel between
these settings and the one of neural MTPP can be drawn, which warrants
further exploration on the applicability of these approaches to our problem.

A more simplistic approach to handling in-sequence dependencies could con-
sist in splitting the sequences into blocks of observations, similar to (Cher-
nozhukov et al., 2018). Under the assumption of weak dependence between
blocks of observations, the regions generated by split conformal prediction re-
main approximately valid (Oliveira et al., 2024), and significant deviations
from exchangeability can be assessed using statistical tests, such as Saha &
Ramdas (2023). Moreover, conformal prediction methods could be employed
for tasks that extend beyond our definitions of the time and mark prediction
tasks. For instance, in long-horizon forecasting applications of TPP models
(Deshpande et al., 2021; Xue et al., 2022; Ludke et al., 2024), a common task
is to predict the number of events that will occur in a specified observation
window. In this context, exploring conformal approaches to construct reliable
prediction regions for event counts emerges as an promising extension of our
framework.

In this work, we also assumed that all sequences were drawn exchangeably
from the same ground-truth process, which may not be systematically valid in
practice. Suppose instead a system governed by multiple sub-processes, and
that each sub-process generates sequences exchangeably. Although sequences
generated by the same sub-process are exchangeable, this hypothesis is no
longer verified for sequences emanating from different sub-processes. Hence,
our methodology cannot be applied directly in this scenario. Fortunately,
recent developments in conformal prediction for hierarchical data (Dunn et al.,
2023; Lee et al., 2024) and federated learning (Plassier et al., 2023) provide
tools that could be exploited to address the challenge of heterogeneous event
sequences.

Finally, we would like to highlight future research directions that extend be-
yond the framework of MTPP models. Throughout this dissertation, we ex-
clusively focused on MTPPs with categorical marks. Discrete marks offer a
practical representation for processes where events can be classified into dis-
crete categories, such the category of an item bought at a specific time. How-
ever, in other applications, events may instead materialize with continuous
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marks representing, e.g. their spatial coordinates. Such processes are called
Spatio-Temporal Point Processes (STPP) and several works recently proposed
flexible neural STPP models to capture complex spatio-temporal dependen-
cies between event occurrences (Okawa et al., 2019; Chen et al., 2021b; Zhou
et al., 2022; Zhou & Yu, 2023; Zhang et al., 2023). However, marked STPP,
where events are represented by both a discrete and a continuous mark, have
so far received little attention from the neural TPP community. Notable ex-
ceptions are exemplified by the works of Yeung et al. (2023) and Narayanan
et al. (2023).

Another active field of research relates to structured temporal point processes,
where the aim is either to learn a TPP model that governs the temporal evo-
lution of nodes and edges in dynamic interaction graphs (Trivedi et al., 2017,
2019; Gracious & Dukkipati, 2023), or to learn a latent dynamic graph that
governs the evolution of events’ interactions over time (Zhang et al., 2021;
Yang & Zha, 2024). Investigating how our parametrization framework can be
extended to the contexts of marked STPP and structured TPP models, along
with the development of approaches for distribution-free conformal inference
in these contexts, opens the door to promising avenues of future research.
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A.1. Real-World Event Sequence Datasets

In this section, we review the different real-world and synthetic datasets
datasets employed throughout this thesis.

A.1.1 Marked Datasets

LastFM 1 (Hidasi & Tikk, 2012): This dataset comprises records of people
listening to songs over time. Each sequence relates to a user, and each mark
corresponds to the artist of the song.

MOOC 1 (Kumar et al., 2019): This dataset captures the activities of students
on a massive open online course (MOOC) platform. A sequence corresponds
to a student, and the mark refers to the type of activity carried out by the
student, e.g. watching a video or answering a quiz.

Wikipedia 1 (Kumar et al., 2019) : Contains records of edits made to
Wikipedia pages in the course of a month. Each sequence corresponds to
a given page, and the marks relate to specific editors.

MIMIC2 2 (Du et al., 2016) : Electronic health records (HER) of patients in
an intensive care units for seven years. A sequence corresponds to a patient,
and the marks are the types of diseases.

Github 3 (Trivedi et al., 2019) : This dataset captures the activity records
of public account owners on the open-source platform GitHub, covering the
period from January 2013 to December 2013. Each sequence corresponds to an
account, and the marks are the types of action performed, i.e. "Watch", "Star",
"Fork", "Push", "Issue", "Comment Issue", "Pull Request", "Commit".

Stack Overflow 5 (Du et al., 2016) : Contains records of the times users
received a badge on the question-answering platform Stack Overflow between
2012 and 2014. Each sequence corresponds to a user, and the marks are the
types of badges received, e.g. "Stellar Question", "Guru", "Great Answer".

Retweets 2 (Zhao et al., 2015) : This dataset comprises streams of retweet
events following the creation of an original tweet. Each sequence corresponds to
a tweet, and marks refer to the category to which the retweeter belongs based
off his/her popularity, i.e. small, medium, and large number of followers.

1https://github.com/srijankr/jodie/
2https://github.com/babylonhealth/neuralTPPs
3https://github.com/uoguelph-mlrg/LDG
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Table A.1: Marked datasets’ statistics after pre-processing. MSL corresponds
to the average number of events per sequence.

Sequences Events MSL Max Len. Min Len. Marks

Wikipedia 590 30472 51.6 1163 2 50
MOOC 7047 351160 49.8 416 2 50
LastFM 856 193441 226.0 6396 2 50
MIMIC2 599 1812 3.0 32 2 43
Github 173 20657 119.4 4698 3 8

Stack Overflow 7959 569688 71.6 735 40 22
Retweets 24000 2610102 108.8 264 50 3

Reddit 5 (Kumar et al., 2019): Records of one-month submissions made to
various sub-reddits on the social platform Reddit. Each sequence corresponds
to a user, and an event’s mark refers to the specific sub-reddit to which the
user responds.

A.1.2 Unmarked Datasets

Twitter 4 (Shchur et al., 2020b): This dataset contains records of tweets made
over several years.

PUBG 4 (Shchur et al., 2020b): Records of players’ death in the online game
PUBG. Each sequence corresponds to a game, and a timestamp refers to the
death of a given player.

Yelp Airport 4 (Shchur et al., 2020b): This dataset contains customers check-
in times to 319 businesses on the platform Yelp at the McCarran International
Airport. Each sequence corresponds to a business.

Yelp Mississauga 4 (Shchur et al., 2020b): Similar to the Yelp Airport
dataset, but for 319 businesses in the city of Mississauga.

Yelp Toronto 5 (Shchur et al., 2020a) : This dataset contains sequences of
reviews made by customers on the platform Yelp for 300 restaurants in the
city of Toronto. Each sequence corresponds to a restaurant.

4https://github.com/shchur/triangular-tpp
5https://github.com/shchur/ifl-tpp
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Table A.2: Unmarked datasets’ statistics after pre-processing. MSL corre-
sponds to the average number of events per sequence.

Sequences Events MSL Max Len. Min Len.

Reddit Submissions 1094 1235128 1129.0 2658 362
Reddit Comments 1355 400933 295.9 2137 4

Taxi 182 17904 98.4 140 12
Twitter 1804 29862 16.6 169 2

Yelp Toronto 300 215146 717.2 2868 424
Yelp Airport 319 9716 30.5 55 9

Yelp Mississauga 319 17621 55.2 107 3
PUBG 3001 229703 76.5 97 26

Reddit Comments 4(Shchur et al., 2020b) : Records of comments in reply
to Reddit discussion threads within 24hrs of the original post submission. The
data is recorded between 2018 and 2020, and each sequence corresponds to a
discussion thread.

Reddit Submissions 4(Shchur et al., 2020b) : This dataset comprises records
of submissions made to a political sub-Reddit between 2017 and 2020. Each
sequence corresponds to a 24 hours window.

Taxi 4 (Shchur et al., 2020b) : Contains the records of taxi pick-ups in the
South of Manhattan. Each sequence corresponds to a taxi, and timestamps
refer to the times at which passengers were taken on board.
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A.2. Simulated Datasets

In Chapters 3 and 5, we used a synthetic dataset generated from a multidi-
mensional Hawkes process with exponential kernels, i.e.

λ∗k(t) = λk +
K∑

k′=1

∑
(tj ,kj)∈Hk′

t

γk,k′exp
(
−βk,k′(t− tj)

)
, (A.1)

where

λ =

λ1...
λK

 ∈ RK
+ , γ =

γ1,1 . . . γ1,K
...

. . .
...

γK,1 . . . γK,K

 ∈ RK×K
+ , (A.2)

and

β =

β1,1 . . . β1,K
...

. . .
...

βK,1 . . . βK,K

 ∈ RK×K
+ , (A.3)

and Hk′
t = {(tj , kj) ∈ S | tj < t, kj = k′}. For simulation, we set the value of

the parameters λ, γ, and β to

λ =


0.2
0.6
0.1
0.7
0.9

γ =


0.25 0.13 0.13 0.13 0.13
0.13 0.35 0.13 0.13 0.13
0.13 0.13 0.2 0.13 0.13
0.13 0.13 0.13 0.3 0.13
0.13 0.13 0.13 0.13 0.25

β =


4.1 0.5 0.5 0.5 0.5
0.5 2.5 0.5 0.5 0.5
0.5 0.5 6.2 0.5 0.5
0.5 0.5 0.5 4.9 0.5
0.5 0.5 0.5 0.5 4.1

 ,

where the matrix γ is scaled to have a spectral radius of approximately 0.8,
guaranteeing stationarity of the process (Bacry et al., 2020). The process
essentially corresponds to a marked process with K = 5 marks. All simulations
are carried out with the library tick 6 (Bacry et al., 2018).

6https://x-datainitiative.github.io/tick/index.html
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Suppose that ei−1 = (ti−1, ki−1) is the last observed event in a sequence S.
Let f∗(t, k) be the joint PDF of arrival times and marks, and let λ∗k(t) be the
marked intensity functions of the process. For t > ti−1, f∗(t, k) and λ∗k(t)
verify

f∗(t, k) = λ∗k(t)exp (−Λ∗(t)) , (B.1)

where Λ∗(t) =
∑K

k=1

∫ t
ti−1

λ∗(s)ds is the ground compensator of the process.

Proof. By definition of λ∗(t) Rasmussen (2018), we have:

λ∗(t) =
K∑
k=1

λ∗k(t) =
f∗(t)

1− F ∗(t)
(B.2)

=
d
dtF

∗(t)

1− F ∗(t)
(B.3)

= − d

dt
log (1− F ∗(t)) . (B.4)

Integrating both sides from ti−1 to t, we get

Λ∗(t) =

∫ t

ti−1

λ∗(s)ds =

∫ t

ti−1

−dlog (1− F ∗(s)) (B.5)

= −log (1− F ∗(t)) + log

1− F ∗(ti−1)︸ ︷︷ ︸
=0

 , (B.6)

where F ∗(ti−1) = 0 results from the point process being simple, i.e. two events
occur simultaneously with probability 0. Rearranging the terms in (B.6), we
find

F ∗(t) = 1− exp (−Λ∗(t)) = 1− exp

(
−

K∑
k=1

Λ∗
k(t)

)
. (B.7)

Differentiating (B.7) with respect to t gives

f∗(t) =
d

dt
F ∗(t) = λ∗(t)exp (−Λ∗(t)) . (B.8)

Finally, given that λ∗k(t) = λ∗(t)p∗(k|t), we have

f∗(t, k) = f∗(t)p∗(k|t) = λ∗k(t)exp (−Λ∗(t)) (B.9)
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C.1. Details on Statistical Tests

in Chapter 3, we introduced statistical tests to conduct pairwise comparisons
between models for each metric separately. This section, which is mainly in-
spired from Demšar (2006) and García & Herrera (2008), briefly presents the
Friedman and Holm’s post-hoc tests that we employed in Section 3.3.4.

Friedman test. The Friedman test (Friedman, 1937, 1940) is a non-
parametric statistical test that enables to determine differences between the
performance of multiple models measured on multiple datasets. For each
dataset separately, the Friedmann test first ranks all models based on their
respective performance with respect to a metric of interest, say LT . Then,
for a given dataset, the best performing model on LT is assigned rank 1, the
second rank 2, and so on.

Suppose that we have M models evaluated on D datasets. Denoting rdm as the
rank of model m on dataset d, the Friedman test then computes the average
ranks r̂m = 1

D

∑D
d=1 r

d
m of all M models and evaluate the statistic

χ2
F =

12D

M(M + 1)

[
M∑

m=1

r̂2m − M(M + 1)2

4

]
. (C.1)

Under the null hypothesis, which states that all average ranks r̂m are equal, the
statistic χ2

F follows a chi-squared distribution with M − 1 degrees of freedom.
For a given significance level α, rejecting the null hypothesis implies that at
least one statistically significant difference exists among the average ranks.
In such case, we can proceed with an appropriate post-hoc test to compare
pairwise differences between models, adjusting for multiple comparisons. A
common choice is Holm’s post-hoc test (Holm, 1979).

Holm’s post-hoc test allows to control the family-wise error rate when com-
paring the performance of all models against each other. For any two models
mi and mj with average ranks r̂i and r̂j , respectively, the test computes the
following statistic

zij =
r̂i − r̂j√
M(M+1)

6D

. (C.2)

The n = M(M − 1)/2 values zij (one for each pairwise comparison) are then
used to obtain the corresponding p-values from a table of normal distributions.
To account for multiple hypothesis testing, Holm’s post-hoc test adjusts the
significance level α using a step-down procedure. Let p1 ≥ p2 ≥ ... ≥ pn be the
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ordered set of n p-values. To accept or reject the null hypothesis associated
to p1, Holm’s post-hoc test compares p1 with the adjusted significance level
α/n. If p1 < α/n, the null hypothesis is rejected and we pursue by comparing
p2 with α/(n − 1). Once we reach a null hypothesis that cannot be rejected,
we stop, and all subsequent null hypothesis are kept. From this point, we
can conclude of a statistical difference at significance level α for all pairwise
comparisons whose null hypothesis have been rejected by the procedure.

C.2. Results for Unmarked Datasets

We report the comparison of different event encoding mechanisms and history
encoders for unmarked datasets in Table C.1 and Table C.2, respectively, where
we also added the worst score per variation of component. The results of the
combinations that performed best with respect to the LT can be found in Table
C.3. Overall, our findings regarding unmarked datasets align with the ones
described in Section 3.4. However, we note that most decoders show a lower
PCE, and hence, improved calibration with respect to the distribution of inter-
arrival time compared to marked datasets. The reliability diagrams displayed
in Figure C.1 for unmarked datasets do indeed confirm this observation. In
Figure C.2, we present the CD diagrams illustrating the pairwise differences
between all combinations of Table C.3 for the LT and PCE metrics. While
there is a noticeable distinction between the average ranks of the considered
decoders, the data does not provide sufficient evidence to conclude of statistical
differences at the α = 0.05 significance level. As for marked datasets, this can
be explained by a large number of pairwise comparisons, resulting in high
adjusted p-values.

Figure C.1: Reliability diagrams for the time predictive distributions of the
models of Table C.3, averaged over all unmarked datasets. The bold black line
corresponds to perfect probabilistic calibration.



210 Supplementary Material for Chapter 3

Table C.1: Mean, median, and worst scores, as well as average ranks per de-
coder and variation of event encoding, for unmarked datasets. Refer to Section
3.3.5 for details on the aggregation procedure. Best scores are highlighted in
bold.

Unmarked Datasets

LT PCE

Mean Median Worst Rank Mean Median Worst Rank

EC-TO 0.25 0.24 0.6 3.5 0.07 0.06 0.16 3.25
EC-LTO 0.25 0.26 0.64 3.5 0.07 0.06 0.16 3.62
EC-TEM -0.21 -0.26 0.31 1.0 0.05 0.03 0.14 1.25
EC-LE -0.09 -0.04 0.46 2.0 0.05 0.03 0.15 1.88

LNM-TO -1.15 -0.5 -0.26 3.0 0.01 0.01 0.01 3.12
LNM-LTO -1.17 -0.57 -0.25 3.38 0.01 0.01 0.01 2.25
LNM-TEM -1.46 -0.79 -0.51 1.12 0.01 0.01 0.01 1.5
LNM-LE -0.98 -0.59 -0.44 2.5 0.01 0.01 0.01 3.12

FNN-TO 0.7 0.6 1.06 2.62 0.09 0.09 0.15 2.62
FNN-LTO -0.19 -0.25 1.69 1.25 0.02 0.01 0.06 1.0
FNN-LE 0.56 0.5 1.03 2.12 0.08 0.07 0.15 2.38

MLP/MC-TO -0.02 0.0 0.1 3.75 0.05 0.04 0.08 3.62
MLP/MC-LTO -0.14 -0.17 0.06 2.5 0.03 0.03 0.08 1.88
MLP/MC-TEM -0.23 -0.21 -0.04 2.12 0.04 0.03 0.09 2.62
MLP/MC-LE -0.3 -0.33 -0.04 1.62 0.03 0.02 0.07 1.88

RMTPP-TO -0.07 -0.07 0.11 3.75 0.04 0.03 0.08 3.75
RMTPP-LTO -0.21 -0.13 0.2 2.75 0.02 0.02 0.03 2.0
RMTPP-TEM -0.37 -0.32 -0.25 1.25 0.03 0.02 0.07 1.88
RMTPP-LE -0.3 -0.28 -0.14 2.25 0.03 0.02 0.08 2.38

SA/CM-TO 0.71 0.24 4.19 2.38 0.05 0.03 0.14 2.62
SA/CM-LTO 1.08 0.23 4.93 2.12 0.05 0.03 0.14 2.25
SA/CM-LE -0.22 -0.18 0.19 1.5 0.02 0.01 0.05 1.12

SA/MC-TO 0.78 0.66 1.17 3.5 0.09 0.08 0.16 3.38
SA/MC-LTO 0.68 0.69 1.09 3.5 0.09 0.1 0.15 3.38
SA/MC-TEM -0.42 -0.39 -0.18 1.88 0.02 0.01 0.07 1.62
SA/MC-LE -0.5 -0.49 0.17 1.12 0.03 0.02 0.08 1.62
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Table C.2: Mean, median, and worst scores, as well as average ranks per de-
coder and variation of history encoder, for unmarked datasets. Refer to Section
3.3.5 for details on the aggregation procedure. Best scores are highlighted in
bold.

Unmarked Datasets

LT PCE

Mean Median Worst Rank Mean Median Worst Rank

CONS-EC 1.03 0.87 2.14 3.0 0.1 0.09 0.2 3.0
SA-EC 0.48 0.54 0.85 2.0 0.08 0.07 0.17 2.0

GRU-EC -0.38 -0.4 0.25 1.0 0.04 0.02 0.14 1.0

CONS-LNM -0.83 -0.16 0.13 2.75 0.01 0.01 0.02 2.25
SA-LNM -0.69 -0.26 -0.14 2.25 0.01 0.01 0.02 2.25

GRU-LNM -1.7 -0.92 -0.61 1.0 0.01 0.01 0.01 1.5

CONS-FNN 0.63 0.53 1.26 2.62 0.06 0.05 0.13 2.12
SA-FNN 0.46 0.35 1.06 2.25 0.06 0.06 0.1 1.62

GRU-FNN 0.25 0.16 0.94 1.12 0.06 0.06 0.11 2.25

CONS-MLP/MC 0.46 0.5 0.74 2.88 0.06 0.06 0.11 2.88
SA-MLP/MC 0.15 0.17 0.33 2.12 0.05 0.04 0.09 2.0

GRU-MLP/MC -0.49 -0.47 -0.33 1.0 0.03 0.02 0.06 1.12

CONS-RMTPP 0.31 0.26 0.79 2.88 0.04 0.03 0.06 2.38
SA-RMTPP 0.04 0.01 0.29 2.12 0.04 0.03 0.07 2.38

GRU-RMTPP -0.52 -0.54 -0.33 1.0 0.02 0.01 0.06 1.25

CONS-SA/CM 1.03 0.68 2.87 2.88 0.05 0.04 0.11 2.62
SA-SA/CM 0.53 0.26 2.7 1.62 0.04 0.03 0.1 1.88

GRU-SA/CM 0.51 0.2 3.0 1.5 0.04 0.03 0.1 1.5

CONS-SA/MC 0.52 0.49 0.86 2.88 0.07 0.06 0.11 2.62
SA-SA/MC 0.17 0.21 0.34 1.75 0.06 0.07 0.08 1.5

GRU-SA/MC 0.1 0.14 0.38 1.38 0.06 0.07 0.08 1.88
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Table C.3: Mean, median, worst scores, and average ranks of the best com-
binations per decoder on LT across all unmarked datasets. Best results are
highlighted in bold.

Unmarked Datasets

LT PCE

Mean Median Worst Rank Mean Median Worst Rank

GRU-EC-TEM + B -0.41 -0.46 0.16 5.5 0.04 0.02 0.13 7.12
GRU-LNM-TEM -1.96 -0.95 -0.62 1.25 0.01 0.01 0.01 2.12
GRU-LN-TEM -0.25 -0.25 0.41 7.0 0.03 0.03 0.07 7.75
GRU-FNN-LTO -0.48 -0.59 1.48 4.12 0.01 0.01 0.05 3.38

GRU-MLP/MC-LTO -0.57 -0.56 -0.44 4.25 0.02 0.01 0.05 5.5
GRU-RMTPP-LTO -0.6 -0.55 -0.28 4.25 0.01 0.01 0.03 4.12

SA-SA/CM-LE -0.23 -0.15 0.0 7.38 0.02 0.01 0.04 4.5
GRU-SA/MC-LE -0.56 -0.55 0.4 4.12 0.03 0.02 0.1 5.25

Hawkes -0.22 -0.16 0.16 7.12 0.02 0.01 0.06 5.25
Poisson 4.23 2.54 12.29 11.0 0.25 0.26 0.47 11.0

NH 2.29 1.11 8.2 10.0 0.16 0.15 0.3 10.0

(a) NLL-T. (b) PCE.

Figure C.2: Critical Distance (CD) diagrams per metric at the α = 0.05 sig-
nificance level for all models of Table C.3. Average ranks are displayed on top,
and a bold line joins models that are not statistically different.
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C.3. Additional Results

In Table C.4, we report the results with respect to all time-related metrics
(LT , PCE) for all models of Table 3.6 on marked datasets individually, while
results with respect to marked related metrics (LM , ECE, F1-score) are given
in Table C.5. In turn, results with respect to time-related metrics for models
of Table C.3 on unmarked datasets are reported in Table C.6.

Finally, Table C.7 summarizes all the variations of event encoder, history en-
coder and decoder that have been considered in the experimental study of
Chapter 3. The column "Unmarked" indicates whether the combination was
appropriate for training on unmarked datasets.

Table C.4: Results with respect to the LT and PCE for all models in Table
3.6 on each marked dataset. Standard error across all splits is reported in
parenthesis, and best results are highlighted in bold.

LT

LastFM MOOC Wikipedia Github MIMIC2 Hawkes SO Retweets

GRU-EC-LE -1102.45 (49.95) -105.23 (3.43) -153.79 (14.4) -290.58 (55.37) 0.91 (0.05) -78.05 (0.78) -82.38 (1.34) -546.95 (2.86)
GRU-LNM-TO -1363.43 (59.03) -275.49 (3.53) -242.45 (30.64) -378.09 (57.75) 0.13 (0.33) -75.62 (1.01) -79.21 (2.32) -613.77 (14.25)
GRU-LN-LEWL -1351.97 (60.26) -275.49 (3.53) -226.75 (31.05) -369.38 (57.05) 0.66 (0.07) -73.68 (0.76) -74.24 (1.42) -582.47 (2.47)

GRU-FNN-LCONCAT -1355.58 (59.91) -287.65 (3.56) -239.87 (29.03) -371.57 (58.27) 1.76 (0.11) -78.33 (0.8) -87.99 (1.41) -596.29 (2.65)
GRU-MLP/MC-LCONCAT -1338.38 (56.91) -275.43 (3.55) -186.58 (47.99) -325.3 (57.09) 1.82 (0.14) -78.49 (0.79) -87.82 (1.15) -577.8 (1.7)
GRU-RMTPP-LCONCAT -1331.75 (58.87) -268.91 (3.25) -267.41 (24.59) -382.4 (61.05) 1.66 (0.08) -78.49 (0.79) -83.99 (1.47) -570.73 (2.18)

GRU-SA/CM-LE -1299.86 (57.52) -280.73 (3.8) -200.89 (47.85) -331.96 (60.72) 1.23 (0.23) -78.01 (0.79) -84.05 (1.3) -545.31 (13.15)
GRU-SA/MC-LE -1349.8 (60.0) -277.66 (3.03) -207.39 (51.79) -348.82 (56.8) 0.47 (0.12) -78.5 (0.76) -85.17 (1.33) -581.05 (2.59)

Hawkes -1189.48 (55.2) -235.9 (3.09) 332.83 (93.92) -308.42 (57.77) 4.49 (0.24) -78.66 (0.82) -83.18 (1.4) -554.6 (2.15)
Poisson -747.35 (46.13) -51.74 (1.01) -57.32 (16.36) -142.58 (26.06) 2.98 (0.12) -71.6 (0.7) -73.6 (1.11) -234.81 (0.5)

NH -788.33 (33.0) -76.64 (1.21) -102.72 (12.9) -168.39 (29.39) 1.73 (0.11) -72.54 (0.67) -73.79 (1.06) -236.29 (4.38)

GRU-EC-TEMWL -1002.13 (37.43) -97.11 (1.01) -144.57 (14.46) -269.0 (51.2) 1.82 (0.11) -78.0 (0.76) -82.78 (1.42) -535.75 (1.39)
GRU-LNM-CONCAT -1363.78 (59.77) -289.3 (3.06) -261.79 (37.08) -367.41 (56.35) 0.59 (0.22) -76.57 (1.18) -85.12 (3.03) -621.33 (22.55)
GRU-LN-CONCAT -1348.27 (57.29) -280.3 (3.15) -228.31 (31.13) -367.41 (56.35) 0.97 (0.05) -73.68 (0.76) -81.42 (1.34) -583.42 (2.36)

GRU-MLP/MC-TEMWL -1192.81 (46.5) -232.97 (1.31) -135.52 (20.11) -285.31 (51.34) 1.41 (0.11) -78.59 (0.79) -85.9 (1.42) -577.61 (2.41)
GRU-RMTPP-TEMWL + B -1118.02 (52.48) -202.08 (9.0) -136.01 (22.52) -276.45 (51.41) 1.34 (0.14) -78.48 (0.79) -82.96 (1.36) -565.46 (3.72)

GRU-SA/CM-LEWL -1274.49 (50.07) -268.28 (5.07) -174.11 (29.42) -316.81 (51.14) 1.5 (0.18) -77.52 (0.65) -80.23 (1.5) -555.59 (9.08)
GRU-SA/MC-TEMWL -1243.21 (47.96) -257.48 (3.25) -158.02 (27.61) -322.72 (53.94) 1.77 (0.11) -78.04 (0.73) -86.24 (1.29) -569.34 (4.58)

PCE

LastFM MOOC Wikipedia Github MIMIC2 Hawkes SO Retweets

GRU-EC-LE 0.27 (0.0) 0.37 (0.01) 0.35 (0.01) 0.19 (0.01) 0.08 (0.01) 0.02 (0.0) 0.02 (0.0) 0.09 (0.0)
GRU-LNM-TO 0.02 (0.0) 0.04 (0.0) 0.22 (0.07) 0.03 (0.01) 0.05 (0.01) 0.02 (0.01) 0.03 (0.01) 0.01 (0.0)
GRU-LN-LEWL 0.03 (0.0) 0.04 (0.0) 0.28 (0.05) 0.05 (0.0) 0.07 (0.01) 0.03 (0.0) 0.05 (0.0) 0.01 (0.0)

GRU-FNN-LCONCAT 0.02 (0.0) 0.02 (0.0) 0.07 (0.01) 0.02 (0.0) 0.06 (0.0) 0.0 (0.0) 0.0 (0.0) 0.01 (0.0)
GRU-MLP/MC-LCONCAT 0.08 (0.01) 0.13 (0.01) 0.27 (0.03) 0.14 (0.01) 0.05 (0.01) 0.01 (0.0) 0.01 (0.0) 0.02 (0.0)
GRU-RMTPP-LCONCAT 0.06 (0.0) 0.07 (0.0) 0.1 (0.01) 0.02 (0.0) 0.04 (0.0) 0.01 (0.0) 0.01 (0.0) 0.03 (0.0)

GRU-SA/CM-LE 0.05 (0.01) 0.02 (0.0) 0.18 (0.05) 0.09 (0.01) 0.05 (0.01) 0.0 (0.0) 0.0 (0.0) 0.01 (0.0)
GRU-SA/MC-LE 0.06 (0.01) 0.13 (0.0) 0.24 (0.04) 0.12 (0.01) 0.04 (0.01) 0.01 (0.0) 0.01 (0.0) 0.01 (0.0)

Hawkes 0.21 (0.0) 0.2 (0.0) 0.19 (0.01) 0.15 (0.01) 0.06 (0.0) 0.0 (0.0) 0.01 (0.0) 0.03 (0.0)
Poisson 0.38 (0.01) 0.4 (0.0) 0.34 (0.01) 0.33 (0.02) 0.07 (0.0) 0.04 (0.0) 0.04 (0.0) 0.36 (0.0)

NH 0.35 (0.01) 0.4 (0.0) 0.35 (0.01) 0.3 (0.02) 0.07 (0.0) 0.04 (0.0) 0.05 (0.0) 0.36 (0.0)

GRU-EC-TEMWL 0.29 (0.01) 0.39 (0.0) 0.35 (0.01) 0.19 (0.01) 0.06 (0.0) 0.02 (0.0) 0.02 (0.0) 0.12 (0.01)
GRU-LNM-CONCAT 0.02 (0.01) 0.03 (0.01) 0.16 (0.06) 0.05 (0.01) 0.03 (0.01) 0.01 (0.01) 0.03 (0.01) 0.01 (0.0)
GRU-LN-CONCAT 0.04 (0.01) 0.04 (0.0) 0.28 (0.06) 0.05 (0.01) 0.05 (0.01) 0.03 (0.0) 0.04 (0.0) 0.01 (0.0)

GRU-MLP/MC-TEMWL 0.21 (0.01) 0.24 (0.01) 0.33 (0.01) 0.19 (0.01) 0.03 (0.0) 0.01 (0.0) 0.01 (0.0) 0.02 (0.0)
GRU-RMTPP-TEMWL + B 0.25 (0.0) 0.27 (0.01) 0.32 (0.01) 0.18 (0.01) 0.03 (0.0) 0.01 (0.0) 0.01 (0.0) 0.04 (0.0)

GRU-SA/CM-LEWL 0.09 (0.01) 0.09 (0.02) 0.28 (0.02) 0.11 (0.01) 0.05 (0.0) 0.01 (0.0) 0.02 (0.01) 0.01 (0.0)
GRU-SA/MC-TEMWL 0.17 (0.01) 0.19 (0.01) 0.33 (0.01) 0.13 (0.01) 0.05 (0.0) 0.01 (0.0) 0.01 (0.0) 0.03 (0.0)
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Table C.5: Results with respect to the LM , ECE and F1-score for all models in
Table 3.6 on each marked dataset. Standard error across all splits is reported
in parenthesis, and best results are highlighted in bold.

LM

LastFM MOOC Wikipedia Github MIMIC2 Hawkes SO Retweets

GRU-EC-LE 870.89 (30.27) 153.58 (1.94) 272.21 (23.78) 155.36 (21.1) 4.43 (0.16) 111.67 (0.55) 120.66 (1.17) 89.74 (0.16)
GRU-LNM-TO 872.47 (30.81) 151.54 (1.4) 297.42 (29.5) 153.92 (21.54) 4.3 (0.15) 111.67 (0.55) 122.73 (0.87) 88.71 (0.45)
GRU-LN-LEWL 872.63 (31.02) 151.54 (1.4) 289.27 (28.85) 156.31 (21.1) 4.31 (0.15) 111.66 (0.55) 121.66 (0.67) 87.91 (0.25)

GRU-FNN-LCONCAT 813.09 (30.86) 110.71 (5.25) 298.11 (33.11) 128.36 (18.2) 4.36 (0.14) 110.87 (0.59) 109.31 (0.79) 83.38 (0.23)
GRU-MLP/MC-LCONCAT 827.77 (30.3) 128.44 (9.32) 638.25 (187.65) 154.69 (21.38) 4.58 (0.24) 111.4 (0.61) 111.98 (1.42) 83.37 (0.3)
GRU-RMTPP-LCONCAT 834.05 (40.33) 89.92 (1.67) 327.16 (77.34) 122.9 (16.42) 2.29 (0.23) 110.34 (0.56) 107.33 (0.34) 82.63 (0.18)

GRU-SA/CM-LE 871.21 (30.14) 171.64 (2.7) 377.53 (63.96) 154.8 (21.11) 4.39 (0.16) 111.69 (0.54) 121.9 (0.8) 90.35 (0.29)
GRU-SA/MC-LE 869.85 (30.36) 177.49 (2.28) 407.99 (74.55) 156.81 (22.86) 4.55 (0.17) 111.71 (0.54) 117.3 (0.91) 88.5 (0.21)

Hawkes 514.13 (16.19) 112.14 (1.26) 144.79 (11.89) 122.44 (15.5) 12.84 (0.23) 110.83 (0.54) 114.99 (0.75) 89.5 (0.14)
Poisson 888.49 (27.18) 188.13 (2.37) 534.95 (131.14) 168.37 (21.04) 11.25 (0.46) 113.46 (0.54) 132.93 (0.74) 92.11 (0.15)

NH 869.55 (30.47) 184.55 (2.35) 272.66 (21.64) 161.84 (21.59) 4.66 (0.11) 111.99 (0.54) 131.2 (0.74) 91.1 (0.15)

GRU-EC-TEMWL 830.42 (33.2) 98.53 (1.65) 298.61 (38.42) 150.4 (21.71) 3.06 (0.18) 110.06 (0.53) 108.8 (0.93) 85.55 (0.9)
GRU-LNM-CONCAT 752.71 (25.47) 92.15 (1.81) 267.73 (17.66) 139.91 (21.89) 2.5 (0.12) 110.18 (0.61) 107.24 (0.73) 84.33 (1.08)
GRU-LN-CONCAT 744.04 (29.37) 92.58 (1.3) 277.51 (22.56) 139.91 (21.89) 2.8 (0.31) 110.37 (0.52) 108.25 (1.11) 82.83 (0.2)

GRU-MLP/MC-TEMWL 837.78 (41.47) 136.16 (8.43) 454.48 (134.47) 149.36 (20.32) 3.81 (0.29) 111.59 (0.47) 109.07 (1.4) 86.36 (0.85)
GRU-RMTPP-TEMWL + B 750.69 (32.06) 88.58 (1.71) 264.53 (41.57) 136.6 (18.94) 2.43 (0.23) 109.99 (0.55) 108.73 (1.21) 83.94 (0.38)

GRU-SA/CM-LEWL 871.49 (30.22) 165.08 (7.25) 281.76 (22.54) 154.18 (21.25) 4.17 (0.19) 111.7 (0.55) 120.48 (1.8) 87.73 (0.79)
GRU-SA/MC-TEMWL 866.4 (29.6) 157.69 (6.6) 340.59 (49.61) 147.83 (22.54) 3.2 (0.21) 111.32 (0.6) 110.87 (0.56) 87.76 (0.29)

ECE

LastFM MOOC Wikipedia Github MIMIC2 Hawkes SO Retweets

GRU-EC-LE 0.5 (0.0) 0.44 (0.01) 0.48 (0.01) 0.31 (0.01) 0.38 (0.0) 0.44 (0.0) 0.23 (0.02) 0.38 (0.01)
GRU-LNM-TO 0.5 (0.0) 0.45 (0.01) 0.49 (0.0) 0.4 (0.01) 0.41 (0.02) 0.44 (0.0) 0.28 (0.02) 0.28 (0.03)
GRU-LN-LEWL 0.5 (0.0) 0.45 (0.01) 0.5 (0.0) 0.42 (0.01) 0.4 (0.02) 0.44 (0.0) 0.26 (0.01) 0.23 (0.02)

GRU-FNN-LCONCAT 0.43 (0.05) 0.31 (0.04) 0.5 (0.01) 0.15 (0.0) 0.46 (0.0) 0.39 (0.01) 0.03 (0.0) 0.06 (0.0)
GRU-MLP/MC-LCONCAT 0.42 (0.02) 0.21 (0.04) 0.47 (0.02) 0.14 (0.03) 0.32 (0.03) 0.44 (0.01) 0.03 (0.01) 0.06 (0.0)
GRU-RMTPP-LCONCAT 0.43 (0.03) 0.06 (0.01) 0.36 (0.06) 0.15 (0.01) 0.16 (0.02) 0.4 (0.0) 0.15 (0.02) 0.08 (0.02)

GRU-SA/CM-LE 0.5 (0.0) 0.45 (0.0) 0.5 (0.0) 0.43 (0.01) 0.46 (0.0) 0.44 (0.0) 0.26 (0.04) 0.41 (0.0)
GRU-SA/MC-LE 0.5 (0.0) 0.42 (0.01) 0.49 (0.0) 0.22 (0.02) 0.33 (0.01) 0.44 (0.0) 0.15 (0.01) 0.27 (0.02)

Hawkes 0.03 (0.0) 0.14 (0.0) 0.11 (0.03) 0.07 (0.02) 0.19 (0.01) 0.34 (0.01) 0.09 (0.02) 0.19 (0.0)
Poisson 0.5 (0.0) 0.5 (0.0) 0.5 (0.0) 0.49 (0.01) 0.47 (0.0) 0.48 (0.0) 0.46 (0.0) 0.46 (0.0)

NH 0.5 (0.0) 0.5 (0.0) 0.5 (0.0) 0.47 (0.01) 0.46 (0.0) 0.48 (0.0) 0.46 (0.0) 0.45 (0.01)

GRU-EC-TEMWL 0.48 (0.01) 0.21 (0.03) 0.49 (0.0) 0.27 (0.04) 0.17 (0.02) 0.4 (0.0) 0.21 (0.01) 0.12 (0.02)
GRU-LNM-CONCAT 0.35 (0.03) 0.18 (0.02) 0.36 (0.07) 0.31 (0.04) 0.15 (0.01) 0.4 (0.0) 0.12 (0.02) 0.08 (0.01)
GRU-LN-CONCAT 0.29 (0.05) 0.13 (0.02) 0.46 (0.03) 0.31 (0.04) 0.2 (0.05) 0.39 (0.01) 0.13 (0.03) 0.07 (0.01)

GRU-MLP/MC-TEMWL 0.4 (0.05) 0.23 (0.01) 0.44 (0.05) 0.22 (0.02) 0.18 (0.03) 0.44 (0.0) 0.03 (0.0) 0.17 (0.04)
GRU-RMTPP-TEMWL + B 0.31 (0.02) 0.06 (0.01) 0.34 (0.08) 0.19 (0.02) 0.1 (0.01) 0.4 (0.0) 0.13 (0.02) 0.07 (0.01)

GRU-SA/CM-LEWL 0.5 (0.0) 0.42 (0.02) 0.5 (0.0) 0.43 (0.01) 0.39 (0.03) 0.44 (0.0) 0.34 (0.03) 0.23 (0.04)
GRU-SA/MC-TEMWL 0.49 (0.01) 0.36 (0.02) 0.35 (0.06) 0.25 (0.01) 0.27 (0.02) 0.44 (0.0) 0.08 (0.04) 0.26 (0.03)

F1-score

LastFM MOOC Wikipedia Github MIMIC2 Hawkes SO Retweets

GRU-EC-LE 0.0 (0.0) 0.06 (0.0) 0.02 (0.0) 0.4 (0.03) 0.22 (0.02) 0.14 (0.01) 0.29 (0.0) 0.53 (0.0)
GRU-LNM-TO 0.01 (0.0) 0.06 (0.01) 0.01 (0.0) 0.4 (0.03) 0.22 (0.02) 0.14 (0.01) 0.28 (0.01) 0.54 (0.01)
GRU-LN-LEWL 0.01 (0.0) 0.06 (0.01) 0.01 (0.0) 0.4 (0.03) 0.23 (0.02) 0.15 (0.01) 0.28 (0.0) 0.55 (0.0)

GRU-FNN-LCONCAT 0.02 (0.01) 0.23 (0.04) 0.02 (0.01) 0.49 (0.02) 0.22 (0.02) 0.23 (0.0) 0.33 (0.0) 0.6 (0.0)
GRU-MLP/MC-LCONCAT 0.02 (0.0) 0.24 (0.03) 0.03 (0.02) 0.4 (0.03) 0.43 (0.09) 0.2 (0.01) 0.32 (0.0) 0.6 (0.0)
GRU-RMTPP-LCONCAT 0.03 (0.01) 0.38 (0.01) 0.31 (0.11) 0.52 (0.01) 0.74 (0.01) 0.25 (0.01) 0.33 (0.0) 0.6 (0.0)

GRU-SA/CM-LE 0.0 (0.0) 0.04 (0.0) 0.0 (0.0) 0.4 (0.03) 0.22 (0.02) 0.13 (0.01) 0.28 (0.0) 0.45 (0.04)
GRU-SA/MC-LE 0.0 (0.0) 0.03 (0.0) 0.01 (0.0) 0.4 (0.03) 0.24 (0.03) 0.16 (0.01) 0.31 (0.0) 0.55 (0.0)

Hawkes 0.3 (0.0) 0.29 (0.0) 0.66 (0.02) 0.54 (0.01) 0.63 (0.0) 0.28 (0.0) 0.32 (0.0) 0.56 (0.0)
Poisson 0.0 (0.0) 0.01 (0.0) 0.01 (0.0) 0.4 (0.03) 0.2 (0.02) 0.11 (0.0) 0.26 (0.0) 0.33 (0.0)

NH 0.0 (0.0) 0.01 (0.0) 0.0 (0.0) 0.4 (0.03) 0.22 (0.02) 0.11 (0.0) 0.26 (0.0) 0.33 (0.0)

GRU-EC-TEMWL 0.02 (0.0) 0.28 (0.01) 0.01 (0.0) 0.41 (0.03) 0.53 (0.03) 0.27 (0.0) 0.32 (0.0) 0.58 (0.01)
GRU-LNM-CONCAT 0.1 (0.03) 0.36 (0.01) 0.22 (0.1) 0.47 (0.03) 0.64 (0.01) 0.26 (0.0) 0.33 (0.0) 0.59 (0.01)
GRU-LN-CONCAT 0.1 (0.02) 0.36 (0.01) 0.02 (0.01) 0.47 (0.03) 0.53 (0.09) 0.26 (0.0) 0.32 (0.0) 0.6 (0.0)

GRU-MLP/MC-TEMWL 0.02 (0.01) 0.25 (0.01) 0.07 (0.04) 0.42 (0.02) 0.59 (0.02) 0.18 (0.01) 0.33 (0.0) 0.57 (0.01)
GRU-RMTPP-TEMWL + B 0.11 (0.01) 0.39 (0.0) 0.46 (0.09) 0.48 (0.02) 0.73 (0.03) 0.27 (0.0) 0.32 (0.0) 0.59 (0.0)

GRU-SA/CM-LEWL 0.0 (0.0) 0.05 (0.01) 0.0 (0.0) 0.4 (0.03) 0.25 (0.04) 0.14 (0.0) 0.28 (0.01) 0.56 (0.01)
GRU-SA/MC-TEMWL 0.01 (0.0) 0.08 (0.02) 0.1 (0.04) 0.4 (0.03) 0.57 (0.02) 0.19 (0.02) 0.32 (0.0) 0.56 (0.0)
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Table C.6: Results with respect to LT and PCE for all models in Table C.3
on each unmarked dataset. Standard error across all splits is reported in
parenthesis, and best results are highlighted in bold.

LT

Taxi Twitter Reddit Subs Reddit Ask PUBG Yelp T. Yelp A. Yelp M.

GRU-EC-TEM + B -136.78 (3.91) -6.21 (0.46) -4403.97 (24.0) -917.48 (13.1) -106.99 (0.21) -2803.23 (85.58) -5.76 (0.18) -56.18 (0.76)
GRU-LNM-TEM -137.02 (3.87) -11.89 (0.62) -4496.27 (37.01) -926.36 (12.67) -194.39 (18.07) -2957.96 (92.81) -6.8 (0.19) -59.61 (0.9)
GRU-FNN-LTO -132.51 (4.01) -11.66 (0.53) -4424.06 (24.21) -926.25 (12.87) -121.88 (0.18) -2486.32 (80.2) -5.72 (0.16) -58.52 (0.78)

GRU-MLP/MC-LTO -136.25 (3.95) -10.4 (0.32) -4403.41 (24.25) -921.58 (12.77) -110.44 (1.21) -2808.32 (84.78) -5.75 (0.26) -58.21 (0.79)
GRU-RMTPP-LTO -136.15 (3.98) -9.96 (0.53) -4407.58 (24.0) -919.08 (12.91) -107.04 (0.2) -2906.91 (87.45) -5.85 (0.14) -58.31 (0.79)

SA-SA/CM-LE -134.2 (4.13) -10.54 (0.51) -4320.9 (23.17) -856.8 (12.31) -104.81 (1.31) -2739.73 (81.7) -5.29 (0.15) -55.49 (0.88)
GRU-SA/MC-LE -124.53 (5.1) -12.11 (0.5) -4387.88 (19.64) -922.39 (13.07) -109.3 (0.9) -2901.79 (92.0) -6.83 (0.23) -57.35 (0.84)

Hawkes -134.09 (3.93) -7.62 (0.51) -4395.2 (23.74) -919.51 (12.92) -102.69 (0.2) -2773.63 (87.1) -4.62 (0.18) -53.33 (0.8)
Poisson -41.71 (1.02) 5.18 (0.11) -3706.3 (17.61) -676.53 (10.2) -93.11 (0.15) -673.76 (17.22) -2.11 (0.1) -25.2 (0.29)

NH -48.21 (24.44) -1.94 (0.22) -4158.41 (58.74) -714.92 (11.7) -94.95 (0.14) -2084.84 (291.26) -3.23 (0.14) -39.19 (0.6)

PCE

Taxi Twitter Reddit Subs Reddit Ask PUBG Yelp T. Yelp A. Yelp M.

GRU-EC-TEM + B 0.01 (0.0) 0.13 (0.0) 0.01 (0.0) 0.02 (0.0) 0.02 (0.0) 0.05 (0.0) 0.02 (0.0) 0.05 (0.0)
GRU-LNM-TEM 0.01 (0.0) 0.01 (0.0) 0.01 (0.0) 0.0 (0.0) 0.01 (0.0) 0.01 (0.0) 0.01 (0.0) 0.01 (0.0)
GRU-FNN-LTO 0.02 (0.0) 0.01 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.05 (0.0) 0.01 (0.0) 0.01 (0.0)

GRU-MLP/MC-LTO 0.01 (0.0) 0.03 (0.01) 0.01 (0.0) 0.01 (0.0) 0.01 (0.0) 0.05 (0.0) 0.01 (0.0) 0.02 (0.0)
GRU-RMTPP-LTO 0.01 (0.0) 0.03 (0.0) 0.01 (0.0) 0.01 (0.0) 0.01 (0.0) 0.03 (0.0) 0.01 (0.0) 0.01 (0.0)

SA-SA/CM-LE 0.01 (0.0) 0.01 (0.0) 0.01 (0.0) 0.01 (0.0) 0.01 (0.0) 0.04 (0.0) 0.01 (0.0) 0.02 (0.0)
GRU-SA/MC-LE 0.1 (0.03) 0.02 (0.0) 0.01 (0.0) 0.01 (0.0) 0.01 (0.0) 0.03 (0.0) 0.01 (0.0) 0.02 (0.0)

Hawkes 0.01 (0.0) 0.01 (0.0) 0.0 (0.0) 0.01 (0.0) 0.01 (0.0) 0.06 (0.0) 0.02 (0.0) 0.05 (0.0)
Poisson 0.35 (0.0) 0.2 (0.0) 0.27 (0.0) 0.25 (0.0) 0.07 (0.0) 0.47 (0.0) 0.12 (0.0) 0.27 (0.0)

NH 0.3 (0.06) 0.17 (0.0) 0.1 (0.02) 0.17 (0.0) 0.06 (0.0) 0.28 (0.06) 0.04 (0.0) 0.13 (0.0)
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Table C.7: Combinations included in the experimental study. "Unmarked"
refers to whether the method is adapted for unmarked datasets. For EC, LNM
and RMTPP, the setting where a baseline intensity term (B) is also considered.

Decoder Encoder Event encoding Name Unmarked

EC

CONS \ CONS-EC ✓

GRU

TO GRU-EC-TO ✓
LTO GRU-EC-LTO ✓

CONCAT GRU-EC-CONCAT ✗
LCONCAT GRU-EC-LCONCAT ✗

TEM GRU-EC-TEM ✓
TEMWL GRU-EC-TEMWL ✗

LE GRU-EC-LE ✓
LEWL GRU-EC-LEWL ✗

SA

TO SA-EC-TO ✓
LTO SA-EC-LTO ✓

CONCAT SA-EC-CONCAT ✗
LCONCAT SA-EC-LCONCAT ✗

TEM SA-EC-TEM ✓
TEMWL SA-EC-TEMWL ✗

LE SA-EC-LE ✓
LEWL SA-EC-LEWL ✗

LNM

CONS \ CONS-LNM ✓

GRU

TO GRU-LNM-TO ✓
LTO GRU-LNM-LTO ✓

CONCAT GRU-LNM-CONCAT ✗
LCONCAT GRU-LNM-LCONCAT ✗

TEM GRU-LNM-TEM ✓
TEMWL GRU-LNM-TEMWL ✗

LE GRU-LNM-LE ✓
LEWL GRU-LNM-LEWL ✗

SA

TO SA-LNM-TO ✓
LTO SA-LNM-LTO ✓

CONCAT SA-LNM-CONCAT ✗
LCONCAT SA-LNM-LCONCAT ✗

TEM SA-LNM-TEM ✓
TEMWL SA-LNM-TEMWL ✗

LE SA-LNM-LE ✓
LEWL SA-LNM-LEWL ✗

RMTPP

CONS \ CONS-RMTPP ✓

GRU

TO GRU-RMTPP-TO ✓
LTO GRU-RMTPP-LTO ✓

CONCAT GRU-RMTPP-CONCAT ✗
LCONCAT GRU-RMTPP-LCONCAT ✗

TEM GRU-RMTPP-TEM ✓
TEMWL GRU-RMTPP-TEMWL ✗

LE GRU-RMTPP-LE ✓
LEWL GRU-RMTPP-LEWL ✗

SA

TO SA-RMTPP-TO ✓
LTO SA-RMTPP-LTO ✓

CONCAT SA-RMTPP-CONCAT ✗
LCONCAT SA-RMTPP-LCONCAT ✗

TEM SA-RMTPP-TEM ✓
TEMWL SA-RMTPP-TEMWL ✗

LE SA-RMTPP-LE ✓
LEWL SA-RMTPP-LEWL ✗

FNN

CONS

TO CONS-FNN-TO ✓
LTO CONS-FNN-LTO ✓

CONCAT CONS-FNN-CONCAT ✗
LCONCAT CONS-FNN-LCONCAT ✗

LE CONS-FNN-LE ✓
LEWL CONS-FNN-LEWL ✗

GRU

TO GRU-FNN-TO ✓
LTO GRU-FNN-LTO ✓

CONCAT GRU-FNN-CONCAT ✗
LCONCAT GRU-FNN-LCONCAT ✗

LE GRU-FNN-LE ✓
LEWL GRU-FNN-LEWL ✗

SA

TO SA-FNN-TO ✓
LTO SA-FNN-LTO ✓

CONCAT SA-FNN-CONCAT ✗
LCONCAT SA-FNN-LCONCAT ✗

LE SA-FNN-LE ✓
LEWL SA-FNN-LEWL ✗

Decoder Encoder Event encoding Name Unmarked

MLP/MC

CONS

TO CONS-MLP/MC-TO ✓
LTO CONS-MLP/MC-LTO ✓

CONCAT CONS-MLP/MC-CONCAT ✗
LCONCAT CONS-MLP/MC-LCONCAT ✗

TEM CONS-MLP/MC-TEM ✓
TEMWL CONS-MLP/MC-TEMWL ✗

LE CONS-MLP/MC-LE ✓
LEWL CONS-MLP/MC-LEWL ✗

GRU

TO GRU-MLP/MC-TO ✓
LTO GRU-MLP/MC-LTO ✓

CONCAT GRU-MLP/MC-CONCAT ✗
LCONCAT GRU-MLP/MC-LCONCAT ✗

TEM GRU-MLP/MC-TEM ✓
TEMWL GRU-MLP/MC-TEMWL ✗

LE GRU-MLP/MC-LE ✓
LEWL GRU-MLP/MC-LEWL ✗

SA

TO SA-MLP/MC-TO ✓
LTO SA-MLP/MC-LTO ✓

CONCAT SA-MLP/MC-CONCAT ✗
LCONCAT SA-MLP/MC-LCONCAT ✗

TEM SA-MLP/MC-TEM ✓
TEMWL SA-MLP/MC-TEMWL ✗

LE SA-MLP/MC-LE ✓
LEWL SA-MLP/MC-LEWL ✗

SA/CM

CONS

TO CONS-SA/CM-TO ✓
LTO CONS-SA/CM-LTO ✓

CONCAT CONS-SA/CM-CONCAT ✗
LCONCAT CONS-SA/CM-LCONCAT ✗

LE CONS-SA/CM-LE ✓
LEWL CONS-SA/CM-LEWL ✗

GRU

TO GRU-SA/CM-TO ✓
LTO GRU-SA/CM-LTO ✓

CONCAT GRU-SA/CM-CONCAT ✗
LCONCAT GRU-SA/CM-LCONCAT ✗

LE GRU-SA/CM-LE ✓
LEWL GRU-SA/CM-LEWL ✗

SA

TO SA-SA/CM-TO ✓
LTO SA-SA/CM-LTO ✓

CONCAT SA-SA/CM-CONCAT ✗
LCONCAT SA-SA/CM-LCONCAT ✗

LE SA-SA/CM-LE ✓
LEWL SA-SA/CM-LEWL ✗

SA/MC

CONS

TO CONS-SA/MC-TO ✓
LTO CONS-SA/MC-LTO ✓

CONCAT CONS-SA/MC-CONCAT ✗
LCONCAT CONS-SA/MC-LCONCAT ✗

TEM CONS-SA/MC-TEM ✓
TEMWL CONS-SA/MC-TEMWL ✗

LE CONS-SA/MC-LE ✓
LEWL CONS-SA/MC-LEWL ✗

GRU

TO GRU-SA/MC-TO ✓
LTO GRU-SA/MC-LTO ✓

CONCAT GRU-SA/MC-CONCAT ✗
LCONCAT GRU-SA/MC-LCONCAT ✗

TEM GRU-SA/MC-TEM ✓
TEMWL GRU-SA/MC-TEMWL ✗

LE GRU-SA/MC-LE ✓
LEWL GRU-SA/MC-LEWL ✗

SA

TO SA-SA/MC-TO ✓
LTO SA-SA/MC-LTO ✓

CONCAT SA-SA/MC-CONCAT ✗
LCONCAT SA-SA/MC-LCONCAT ✗

TEM SA-SA/MC-TEM ✓
TEMWL SA-SA/MC-TEMWL ✗

LE SA-SA/MC-LE ✓
LEWL SA-SA/MC-LEWL ✗

Neural Hawkes \ \ NH ✓

Hawkes \ \ Hawkes ✓

Poisson \ \ Poisson ✓
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C.4. Results for Relevant Datasets Only

The discussion in Section 3.4 highlighted that some datasets (MIMIC2, Stack
Overflow, Taxi, Reddit Subs, Reddit Ask Comments, Yelp Toronto and Yelp
Mississauga) might potentially be inappropriate for benchmarking neural TPP
models. For completeness, we report in Tables C.8, C.9, C.10, C.11, C.12
and C.13 the results of the aggregation procedure discussed in Section 3.3.5
without these borderline adequate datasets included. We found no significance
differences with respect to the conclusions of Section 3.4.

Table C.8: Mean and median scores, and average ranks of the best combi-
nations per decoder on the LT (top rows) and LM (bottom row) across all
relevant marked datasets. Best results are highlighted in bold.

Marked Datasets

LT PCE LM ECE F1-score

Mean Median Rank Mean Median Rank Mean Median Rank Mean Median Rank Mean Median Rank

GRU-EC-LCONCAT 0.07 -0.01 8.5 0.22 0.23 9.17 -0.97 -1.34 4.5 0.29 0.28 4.33 0.27 0.27 4.0
GRU-LNM-CONCAT -0.86 -0.84 1.5 0.02 0.01 1.5 -2.97 -1.76 2.33 0.26 0.27 3.33 0.34 0.31 2.67

GRU-LN-LTO -0.41 -0.63 4.17 0.06 0.04 5.0 -0.26 -0.33 5.83 0.4 0.4 7.17 0.21 0.14 7.5
GRU-FNN-LTO -0.62 -0.7 3.17 0.02 0.02 1.83 -0.09 -0.14 6.83 0.39 0.42 6.33 0.21 0.14 6.33

GRU-MLP/MC-LCONCAT -0.41 -0.38 5.67 0.11 0.11 7.0 -0.58 -0.47 5.5 0.29 0.32 3.5 0.25 0.22 4.33
GRU-RMTPP-LCONCAT -0.59 -0.5 4.67 0.05 0.04 4.67 -1.94 -1.99 2.67 0.25 0.26 2.67 0.35 0.34 2.17

GRU-SA/CM-LE -0.33 -0.39 6.33 0.06 0.04 4.0 0.11 0.11 8.17 0.45 0.45 8.33 0.17 0.09 9.0
GRU-SA/MC-LE -0.5 -0.46 4.17 0.09 0.09 5.5 0.1 -0.04 8.17 0.39 0.43 7.33 0.19 0.1 7.33

Hawkes 0.5 -0.15 7.17 0.13 0.17 6.67 -6.27 -1.58 3.17 0.15 0.13 2.0 0.44 0.42 2
Poisson 1.72 1.31 10.83 0.31 0.35 10.5 1.39 1.26 10.83 0.49 0.49 10.67 0.14 0.06 10.33

NH 1.53 1.07 9.83 0.3 0.35 10.17 0.16 0.41 8.0 0.48 0.49 10.33 0.14 0.06 10.33

GRU-EC-TEMWL 0.22 0.16 8.17 0.23 0.24 9.0 -1.5 -1.1 5.0 0.33 0.33 5.83 0.26 0.27 5.5
GRU-LNM-CONCAT -0.86 -0.84 1.17 0.02 0.01 1.83 -2.97 -1.76 2.83 0.26 0.27 4.33 0.34 0.31 3.17
GRU-LN-CONCAT -0.37 -0.57 4.33 0.08 0.04 4.5 -3.0 -1.81 3.5 0.28 0.3 3.83 0.3 0.31 4.0

GRU-FNN-LCONCAT -0.62 -0.71 2.5 0.02 0.02 1.33 -1.98 -1.51 5.0 0.31 0.35 4.67 0.27 0.23 5.5
GRU-MLP/MC-TEMWL 0.16 0.24 7.83 0.22 0.25 8.17 -0.77 -0.64 7.17 0.35 0.39 6.17 0.27 0.26 6.33

GRU-RMTPP-LCONCAT + B -0.54 -0.49 3.33 0.05 0.04 4.0 -3.28 -2.0 3.17 0.2 0.16 2.67 0.37 0.33 2.17
GRU-SA/CM-LEWL -0.25 -0.23 5.83 0.1 0.09 5.17 -0.21 -0.17 8.0 0.42 0.44 8.5 0.19 0.1 9.0

GRU-SA/MC-TEMWL -0.26 -0.3 5.67 0.14 0.15 6.0 -0.39 -0.46 7.67 0.36 0.36 6.83 0.22 0.15 7.17
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Table C.9: Mean and median scores, as well as average ranks per decoder and
variation of event encoding, for relevant marked datasets. Refer to Section
3.3.5 for details on the aggregation procedure. Best results are highlighted in
bold.

Marked Datasets

LT PCE LM ECE F1-score

Mean Median Rank Mean Median Rank Mean Median Rank Mean Median Rank Mean Median Rank

EC-TO 0.83 0.59 7.17 0.26 0.28 6.0 0.15 0.19 6.17 0.45 0.46 7.17 0.17 0.08 7.0
EC-LTO 0.82 0.6 7.33 0.26 0.27 6.5 0.12 0.15 5.67 0.45 0.46 6.67 0.17 0.08 7.5

EC-CONCAT 0.22 0.22 2.5 0.22 0.23 2.5 -0.39 -0.75 3.0 0.37 0.39 1.67 0.25 0.23 2.17
EC-LCONCAT 0.41 0.29 4.0 0.24 0.24 4.83 -0.38 -0.66 3.67 0.36 0.35 2.67 0.24 0.22 3.17

EC-TEM 0.24 0.2 4.0 0.23 0.24 4.5 0.14 0.13 6.0 0.44 0.45 6.17 0.19 0.09 5.67
EC-TEMWL 0.32 0.3 4.17 0.23 0.25 5.0 -0.69 -0.84 1.83 0.35 0.35 2.0 0.27 0.24 1.33

EC-LE 0.2 0.16 3.0 0.22 0.24 2.0 0.11 0.1 5.17 0.43 0.45 5.5 0.19 0.09 5.5
EC-LEWL 0.26 0.25 3.83 0.23 0.25 4.67 -0.15 -0.45 4.5 0.39 0.41 4.17 0.24 0.22 3.67

LNM-TO -0.55 -0.57 6.5 0.02 0.02 5.0 0.03 0.11 6.83 0.45 0.46 6.83 0.17 0.09 7.5
LNM-LTO -0.56 -0.59 6.17 0.02 0.02 5.5 0.0 0.06 6.5 0.45 0.46 7.17 0.17 0.1 6.67

LNM-CONCAT -0.8 -0.8 1.67 0.02 0.02 4.0 -2.48 -1.47 1.5 0.28 0.26 2.0 0.35 0.35 1.5
LNM-LCONCAT -0.79 -0.83 2.0 0.02 0.01 2.33 -1.99 -1.18 3.0 0.31 0.33 2.83 0.29 0.27 3.33

LNM-TEM -0.74 -0.78 4.5 0.02 0.01 4.0 -0.0 0.05 6.5 0.44 0.45 6.0 0.19 0.1 5.83
LNM-TEMWL -0.7 -0.72 4.83 0.03 0.02 4.0 -2.17 -1.49 2.17 0.3 0.32 1.83 0.32 0.29 2.0

LNM-LE -0.71 -0.77 5.67 0.03 0.02 6.83 -0.03 -0.02 6.17 0.43 0.44 6.0 0.19 0.1 6.0
LNM-LEWL -0.71 -0.75 4.67 0.02 0.02 4.33 -2.13 -1.18 3.33 0.32 0.31 3.33 0.29 0.26 3.17

FNN-TO 1.15 0.68 4.5 0.26 0.31 4.67 0.34 0.37 4.5 0.48 0.48 5.5 0.14 0.07 5.17
FNN-LTO -0.43 -0.54 2.0 0.03 0.02 1.67 0.06 0.05 3.5 0.42 0.42 1.83 0.2 0.12 2.17

FNN-CONCAT 1.1 0.54 4.33 0.27 0.31 4.33 0.19 0.13 3.33 0.46 0.46 4.0 0.15 0.09 3.5
FNN-LCONCAT -0.59 -0.66 1.0 0.02 0.02 1.33 -1.23 -1.17 1.67 0.33 0.35 1.17 0.25 0.22 1.0

FNN-LE 1.14 0.72 4.33 0.27 0.32 4.17 0.3 0.34 4.0 0.48 0.48 4.0 0.15 0.06 4.67
FNN-LEWL 1.19 0.65 4.83 0.27 0.32 4.83 0.24 0.34 4.0 0.47 0.47 4.5 0.15 0.08 4.5

MLP/MC-TO 0.23 0.22 6.67 0.19 0.25 5.83 0.34 0.33 6.33 0.43 0.43 6.67 0.18 0.09 7.33
MLP/MC-LTO -0.19 -0.17 3.33 0.11 0.1 1.67 0.5 0.25 7.17 0.41 0.45 6.33 0.19 0.1 5.83

MLP/MC-CONCAT 0.03 0.06 4.83 0.2 0.22 5.83 -0.03 -0.18 3.17 0.37 0.39 3.0 0.24 0.22 3.33
MLP/MC-LCONCAT -0.33 -0.28 1.83 0.11 0.1 1.67 -0.17 -0.42 3.17 0.33 0.34 2.67 0.24 0.21 2.83

MLP/MC-TEM 0.04 0.03 5.67 0.19 0.23 6.0 0.26 0.18 5.17 0.41 0.41 5.83 0.19 0.1 6.67
MLP/MC-TEMWL 0.24 0.32 7.33 0.22 0.25 7.83 -0.6 -0.43 2.17 0.35 0.38 2.5 0.26 0.26 1.67

MLP/MC-LE -0.11 -0.13 3.17 0.16 0.19 3.5 0.38 0.22 5.67 0.4 0.42 6.33 0.19 0.1 5.83
MLP/MC-LEWL -0.09 -0.13 3.17 0.17 0.2 3.67 -0.39 -0.33 3.17 0.34 0.35 2.67 0.24 0.2 2.5

RMTPP-TO 0.32 0.23 7.33 0.2 0.24 6.83 0.07 0.09 6.17 0.44 0.45 7.17 0.17 0.09 7.33
RMTPP-LTO -0.28 -0.42 3.83 0.06 0.07 2.17 0.05 0.03 6.5 0.44 0.44 6.67 0.18 0.11 6.33

RMTPP-CONCAT 0.0 0.06 4.17 0.19 0.22 4.33 -1.66 -1.29 3.0 0.29 0.34 2.33 0.31 0.3 2.5
RMTPP-LCONCAT -0.52 -0.47 1.5 0.05 0.05 1.0 -1.85 -1.57 3.0 0.26 0.27 1.83 0.34 0.32 1.67

RMTPP-TEM 0.03 0.04 5.33 0.19 0.22 5.83 0.06 0.05 5.67 0.43 0.44 6.5 0.19 0.11 6.33
RMTPP-TEMWL 0.08 0.12 4.83 0.19 0.22 5.83 -2.28 -1.42 1.67 0.27 0.29 2.17 0.35 0.37 1.83

RMTPP-LE 0.01 0.02 4.17 0.19 0.22 4.5 0.07 0.05 6.0 0.43 0.44 5.67 0.19 0.11 6.0
RMTPP-LEWL 0.05 0.12 4.83 0.19 0.23 5.5 -1.24 -1.03 4.0 0.32 0.38 3.67 0.28 0.28 4.0

SA/CM-TO -0.06 -0.09 4.67 0.08 0.06 4.17 0.75 0.22 4.5 0.46 0.46 5.0 0.14 0.1 4.33
SA/CM-LTO -0.21 -0.18 2.5 0.05 0.05 2.33 0.14 0.07 3.5 0.44 0.44 2.67 0.19 0.1 2.5

SA/CM-CONCAT -0.12 -0.29 3.5 0.08 0.07 3.17 0.78 0.2 4.5 0.46 0.46 3.5 0.14 0.1 3.0
SA/CM-LCONCAT -0.02 0.05 4.33 0.08 0.06 3.5 0.16 0.08 2.33 0.45 0.45 3.0 0.19 0.11 3.0

SA/CM-LE -0.3 -0.36 2.33 0.06 0.04 2.83 0.1 0.1 3.17 0.45 0.45 4.17 0.18 0.08 4.5
SA/CM-LEWL -0.19 -0.19 3.67 0.1 0.08 5.0 -0.12 -0.11 3.0 0.42 0.44 2.67 0.19 0.09 3.67

SA/MC-TO 1.4 1.0 7.5 0.29 0.34 6.67 0.22 0.31 5.5 0.48 0.49 7.0 0.14 0.06 7.33
SA/MC-LTO 1.24 0.82 5.67 0.28 0.32 6.0 0.25 0.4 6.0 0.47 0.48 6.33 0.15 0.06 6.17

SA/MC-CONCAT 0.63 0.85 6.67 0.24 0.31 6.33 0.03 0.11 5.0 0.44 0.49 5.83 0.18 0.06 5.83
SA/MC-LCONCAT 0.52 0.74 5.17 0.24 0.3 6.5 0.1 0.15 5.17 0.42 0.48 5.0 0.18 0.06 5.67

SA/MC-TEM -0.35 -0.3 3.33 0.13 0.14 3.33 0.18 0.05 5.0 0.41 0.44 4.33 0.18 0.08 4.17
SA/MC-TEMWL -0.25 -0.26 4.17 0.14 0.14 4.17 -0.32 -0.27 2.17 0.37 0.38 2.0 0.22 0.14 1.67

SA/MC-LE -0.48 -0.42 1.5 0.09 0.09 1.33 0.12 -0.03 4.67 0.4 0.43 3.67 0.19 0.09 3.5
SA/MC-LEWL -0.45 -0.45 2.0 0.1 0.1 1.67 -0.1 -0.13 2.5 0.37 0.42 1.83 0.2 0.1 1.67
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Table C.10: Mean and median scores, as well as average ranks per decoder and
variation of event encoding, for relevant marked datasets. Refer to Section 3.3.5
for details on the aggregation procedure. Best results are highlighted in bold.

Marked Datasets

LT PCE LM ECE F1-score

Mean Median Rank Mean Median Rank Mean Median Rank Mean Median Rank Mean Median Rank

CONS-EC 1.66 1.26 3.0 0.3 0.35 2.83 0.7 0.46 2.67 0.48 0.49 3.0 0.14 0.06 3.0
SA-EC 0.68 0.54 2.0 0.25 0.27 2.17 -0.02 -0.16 2.0 0.43 0.42 2.0 0.2 0.15 1.83

GRU-EC 0.15 0.15 1.0 0.22 0.23 1.0 -0.25 -0.4 1.33 0.39 0.38 1.0 0.22 0.17 1.17

CONS-LNM -0.34 -0.5 2.83 0.02 0.02 2.33 0.65 0.39 3.0 0.48 0.49 3.0 0.14 0.06 3.0
SA-LNM -0.6 -0.66 1.83 0.02 0.02 2.17 -0.8 -0.44 1.83 0.39 0.39 1.83 0.24 0.17 1.83

GRU-LNM -0.79 -0.8 1.33 0.03 0.01 1.5 -1.39 -0.89 1.17 0.35 0.37 1.17 0.26 0.2 1.17

CONS-FNN 0.94 0.61 3.0 0.2 0.23 2.67 0.76 0.41 3.0 0.47 0.48 2.67 0.16 0.07 3.0
SA-FNN 0.68 0.38 1.83 0.19 0.22 2.0 0.15 0.16 2.0 0.45 0.45 1.83 0.17 0.11 1.83

GRU-FNN 0.51 0.12 1.17 0.18 0.21 1.33 -0.18 -0.08 1.0 0.43 0.45 1.5 0.18 0.1 1.17

CONS-MLP/MC 0.46 0.43 2.67 0.19 0.22 2.0 0.88 0.58 2.67 0.44 0.46 3.0 0.17 0.07 3.0
SA-MLP/MC 0.09 0.15 2.0 0.17 0.21 2.33 0.13 -0.04 2.0 0.39 0.4 2.0 0.21 0.15 1.83

GRU-MLP/MC -0.14 -0.12 1.33 0.17 0.19 1.67 -0.06 -0.23 1.33 0.36 0.37 1.0 0.22 0.17 1.17

CONS-RMTPP 0.81 0.56 3.0 0.18 0.21 2.33 1.1 0.59 2.67 0.47 0.48 3.0 0.13 0.05 3.0
SA-RMTPP 0.1 0.1 1.83 0.17 0.19 2.17 -0.49 -0.41 2.17 0.38 0.39 1.83 0.24 0.18 1.83

GRU-RMTPP -0.18 -0.17 1.17 0.15 0.17 1.5 -1.2 -0.83 1.17 0.34 0.37 1.17 0.26 0.22 1.17

CONS-SA/CM -0.02 -0.01 2.33 0.09 0.1 2.17 0.75 0.47 2.67 0.45 0.45 2.0 0.17 0.09 1.83
SA-SA/CM -0.14 -0.16 1.67 0.07 0.06 2.17 0.29 0.1 1.83 0.45 0.45 1.83 0.17 0.1 1.67

GRU-SA/CM -0.16 -0.07 2.0 0.07 0.07 1.67 0.31 0.1 1.5 0.45 0.45 2.17 0.17 0.1 2.5

CONS-SA/MC 0.8 0.52 3.0 0.22 0.25 2.83 0.76 0.44 3.0 0.46 0.47 3.0 0.16 0.07 3.0
SA-SA/MC 0.29 0.23 1.67 0.19 0.21 1.83 0.1 0.13 1.83 0.42 0.46 2.0 0.18 0.08 1.5

GRU-SA/MC 0.28 0.22 1.33 0.19 0.21 1.33 0.02 0.07 1.17 0.42 0.45 1.0 0.18 0.08 1.5

Table C.11: Mean, median, worst scores, and average ranks of the best com-
binations per decoder on the LT across all relevant unmarked datasets. Best
results are highlighted in bold.

Unmarked Datasets

LT PCE

Mean Median Worst Rank Mean Median Worst Rank

GRU-EC-TEM + B -0.21 -0.28 0.16 7.0 0.06 0.02 0.13 8.33
GRU-LNM-TEM -3.7 -1.03 -0.83 1.67 0.01 0.01 0.01 1.67

GRU-LN-LE -0.25 -0.46 0.47 6.0 0.02 0.02 0.04 6.67
GRU-FNN-LTO -1.03 -0.79 -0.49 4.0 0.01 0.01 0.01 2.33

GRU-MLP/MC-LTO -0.57 -0.57 -0.5 4.67 0.02 0.01 0.03 5.67
GRU-RMTPP-TEM + B -0.51 -0.54 -0.36 5.67 0.02 0.01 0.05 5.0

GRU-SA/CM-TO -0.71 -0.56 0.73 5.67 0.02 0.01 0.03 6.0
GRU-SA/MC-LE -0.81 -0.87 -0.51 2.33 0.01 0.01 0.02 5.0

Hawkes 0.05 0.06 0.16 8.0 0.01 0.01 0.02 4.33
Poisson 1.54 1.32 2.14 11.0 0.13 0.12 0.2 11.0

NH 0.87 0.9 0.96 10.0 0.09 0.06 0.17 10.0
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Table C.12: Mean, median, and worst scores, as well as average ranks per
decoder and variation of event encoding, for relevant unmarked datasets. Refer
to Section 3.3.5 for details on the aggregation procedure. Best scores are
highlighted in bold.

Unmarked Datasets

LT PCE

Mean Median Worst Rank Mean Median Worst Rank

EC-TO 0.36 0.35 0.6 3.33 0.08 0.04 0.16 2.67
EC-LTO 0.39 0.34 0.64 3.67 0.08 0.04 0.16 4.0
EC-TEM -0.03 -0.13 0.31 1.0 0.06 0.03 0.14 1.0
EC-LE 0.17 0.04 0.46 2.0 0.07 0.03 0.15 2.33

LNM-TO -2.19 -0.73 -0.53 3.0 0.01 0.01 0.01 2.67
LNM-LTO -2.18 -0.72 -0.49 3.33 0.01 0.01 0.01 2.33
LNM-TEM -2.64 -0.82 -0.76 1.33 0.01 0.01 0.01 1.67
LNM-LE -1.55 -0.82 -0.56 2.33 0.01 0.01 0.01 3.33

FNN-TO 0.54 0.51 0.62 2.33 0.08 0.04 0.15 2.33
FNN-LTO -0.78 -0.65 -0.25 1.0 0.01 0.01 0.01 1.0
FNN-LE 0.51 0.52 0.54 2.67 0.08 0.05 0.15 2.67

MLP/MC-TO -0.03 0.01 0.1 3.33 0.04 0.03 0.08 3.33
MLP/MC-LTO -0.21 -0.17 0.06 2.33 0.02 0.03 0.03 1.33
MLP/MC-TEM -0.12 -0.14 -0.04 2.33 0.04 0.03 0.09 3.0
MLP/MC-LE -0.31 -0.39 -0.12 2.0 0.03 0.02 0.06 2.33

RMTPP-TO -0.11 -0.16 0.11 3.33 0.04 0.02 0.08 3.33
RMTPP-LTO -0.12 -0.15 0.2 3.0 0.02 0.02 0.03 2.33
RMTPP-TEM -0.33 -0.29 -0.25 1.33 0.03 0.01 0.07 2.33
RMTPP-LE -0.25 -0.24 -0.14 2.33 0.03 0.01 0.08 2.0

SA/CM-TO -0.34 -0.5 0.72 2.0 0.02 0.02 0.03 2.33
SA/CM-LTO 0.67 -0.55 3.38 2.33 0.04 0.02 0.1 2.67
SA/CM-LE -0.25 -0.3 0.19 1.67 0.01 0.01 0.01 1.0

SA/MC-TO 0.76 0.72 0.96 4.0 0.08 0.07 0.15 4.0
SA/MC-LTO 0.51 0.42 0.89 3.0 0.07 0.06 0.14 3.0
SA/MC-TEM -0.57 -0.66 -0.39 2.0 0.01 0.01 0.02 1.0
SA/MC-LE -0.69 -0.8 -0.43 1.0 0.01 0.01 0.02 2.0



221

Table C.13: Mean, median, and worst scores, as well as average ranks per
decoder and variation of history encoder, for relevant unmarked datasets. Refer
to Section 3.3.5 for details on the aggregation procedure. Best scores are
highlighted in bold.

Unmarked Datasets

LT PCE

Mean Median Worst Rank Mean Median Worst Rank

CONS-EC 1.29 1.14 2.14 3.0 0.1 0.07 0.2 3.0
SA-EC 0.61 0.55 0.75 2.0 0.09 0.05 0.17 2.0

GRU-EC -0.17 -0.27 0.25 1.0 0.06 0.02 0.14 1.0

CONS-LNM -1.83 -0.25 0.12 2.33 0.01 0.01 0.02 1.67
SA-LNM -1.24 -0.64 -0.24 2.67 0.01 0.01 0.01 2.33

GRU-LNM -3.04 -0.93 -0.9 1.0 0.01 0.01 0.01 2.0

CONS-FNN 0.61 0.37 1.26 2.67 0.06 0.03 0.13 2.0
SA-FNN 0.15 0.16 0.34 2.0 0.05 0.03 0.1 1.33

GRU-FNN 0.03 0.14 0.17 1.33 0.06 0.03 0.11 2.67

CONS-MLP/MC 0.51 0.58 0.74 2.67 0.04 0.03 0.07 2.67
SA-MLP/MC 0.1 0.23 0.33 2.33 0.04 0.03 0.06 2.0

GRU-MLP/MC -0.44 -0.41 -0.38 1.0 0.03 0.02 0.06 1.33

CONS-RMTPP 0.45 0.6 0.79 2.67 0.03 0.02 0.05 1.67
SA-RMTPP 0.03 -0.04 0.29 2.33 0.03 0.02 0.07 2.67

GRU-RMTPP -0.43 -0.37 -0.33 1.0 0.03 0.01 0.06 1.67

CONS-SA/CM 0.7 0.12 2.02 3.0 0.03 0.02 0.04 2.67
SA-SA/CM 0.01 -0.43 0.99 1.67 0.02 0.02 0.04 1.33

GRU-SA/CM 0.04 -0.61 1.54 1.33 0.03 0.01 0.06 2.0

CONS-SA/MC 0.54 0.73 0.83 3.0 0.05 0.04 0.09 2.67
SA-SA/MC 0.05 -0.06 0.27 2.0 0.05 0.03 0.08 1.33

GRU-SA/MC -0.05 -0.16 0.25 1.0 0.05 0.04 0.08 2.0
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C.5. Additional Visualizations

Figure C.3: Distributions of log τ (left) and marks (right) for 10 randomly
sampled sequences in LastFM, MOOC, Wikipedia, and Github, after pre-
processing.
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Figure C.4: Distributions of log τ (left) and marks (right) for 10 randomly sam-
pled sequences in MIMIC2, Stack Overflow, and Retweets, after pre-processing.
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Figure C.5: Distribution of log τ for 10 randomly sampled sequences in un-
marked datasets, after pre-processing.
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D.1. Additional Forms of the Negative Log-Likelihood

Consider a dataset Strain = {S1, ...,SL}, where each sequence Sl comprises nl
events with arrival times observed within the interval [0, T ] and l = 1, ..., L.
The average sequence NLL for these sequences can be expressed as a function
of the decompositions of λ∗k(t;θ) and Λ∗

k(t;θ) as

L(θ;Strain) =− 1

L

L∑
l=1

[
nl∑
i=1

log λ∗(tl,i;θ) +
∫ T

tn

λ∗(s;θ)ds

]
︸ ︷︷ ︸

LT (θ;Strain)

− 1

L

L∑
l=1

nl∑
i=1

log p∗(kl,i|τl,i;θ)︸ ︷︷ ︸
LM (θ;Strain)

, (D.1)

and

L(θ;Strain) =− 1

L

L∑
l=1

[
nl∑
i=1

log
[
d

dt
Λ∗(tl,i;θ)

]
+ Λ(T ;θ))

]
︸ ︷︷ ︸

LT (θ;Strain)

− 1

L

L∑
l=1

nl∑
i=1

log p∗(kl,i|τl,i;θ)︸ ︷︷ ︸
LM (θ;Strain)

, (D.2)

where λ∗(t;θ) =
∑K

k=1 λ
∗
k(t;θ) and Λ∗(t;θ) =

∑K
k=1 Λ

∗
k(t;θ).

D.2. Training Details

Encoding past events. To obtain the encoding li ∈ Rdl of an event
ei = (ti, ki) in Ht, we follow the work of (Enguehard et al., 2020) by first
mapping ti to a vector of sinusoidal functions:

lti =

dt/2−1⊕
j=0

sin (αjti)⊕ cos (αjti) ∈ Rdt , (D.3)

where αj ∝ 1000
−2j
dt and ⊕ is the concatenation operator. Then, a mark

embedding lki ∈ Rdk for ki is generated as lki = Ekki, where Ek ∈ Rdk×K is a
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learnable embedding matrix, and ki ∈ {0, 1}K is the one-hot encoding of ki.
Finally, we obtain li through concatenation, i.e. li = [lti||lki ].

Hyperparameters. To ensure that changes in performance are solely at-
tributed to the features enabled by our framework, we control the number of
parameters such the a baseline’s capacity remains equivalent across the base,
base+, base++, base-D, and base-DD setups. Notably, since STHP inher-
ently models the decomposition of the marked intensities, the base and base+
configurations are equivalent. Also, LNM, RMTPP and STHP are equivalent
between the base+ and the base-D settings, and between the base++ and
base-DD settings. Hence, we only consider these models in the base+ and
base++ settings. Furthermore, Table D.1 provides the total number of train-
able parameters for each setup when trained on the LastFM dataset, as well
as their distribution across the encoder and decoder heads. For all baselines
and setups, we use a single encoder layer, and the dimension de of the event
encodings is set to 8. Additionally, we chose a value of M = 32 for the number
of mixture components. It is worth noting that (Shchur et al., 2020a) found
LogNormMix to be robust to the choice of M . Finally, we set the number of
GCIF projections to C = 32.

Table D.1: Number of parameters for each baseline when trained on the
LastFM dataset. The distribution of parameters between the encoder and
decoder heads is reported in parenthesis.

THP STHP SAHP FNN LNM RMTPP

Base 14720 (0.66/0.34) \ 15588 (0.68/0.32) 15939 (0.65/0.35) 13930 (0.67/0.33) 13619 (0.69/0.31)
Base+ 14786 (0.64/0.36) 18586 (0.5/0.5) 15210 (0.67/0.33) 16083 (0.65/0.35) 13946 (0.67/0.33) 13669 (0.69/0.31)

Base++ 14602 (0.63/0.37) 18402 (0.5/0.5) 15514 (0.67/0.33) 14961 (0.67/0.33) 13340 (0.66/0.34) 13063 (0.67/0.33)
Base-D 15512 (0.66/0.34) \ 15412 (0.67/0.33) 16083 (0.65/0.35) \ \

Base-DD 15252 (0.66/0.34) \ 15464 (0.68/0.32) 10446 (0.65/0.35) \ \

D.3. Additional Results

D.3.1 Evaluation Metrics

Tables D.2, D.3 and D.4 give the PCE, ECE, MRR, F1-score and Accu-
racy@{1,5} for the base, base+ and base++ setups across all datasets. The
metrics are averaged over 3 splits, and the standard error is given in paren-
thesis. We note that these results are consistent with our conclusions in the
main text. Specifically, we observe general improvement with respect to mark
related metrics (i.e. ECE, MRR, accuracy@{1,5}) when moving from the base
models to the base+ or base++ setups. Moreover, the PCE metric does not
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always improve between the base+ and base++ setups, suggesting that the
remaining conflicting gradients at the encoder head in the base+ setup are
mostly detrimental to the mark prediction task. Finally, mirroring our dis-
cussion in the main text, the Hawkes decoder remains the most competitive
baseline on the Accuracy@{1,5}, F1-score and MRR metrics on LastFM.

Additionally, we report the results with respect to the MAE metric in Ta-
ble D.5. We notice that lower MAE values do not systematically match the
lower values of LT or PCE in Tables 4.1 and D.2, indicating that the MAE
may not be entirely appropriate to evaluate the time prediction task. As dis-
cussed in Shchur et al. (2021b), neural MTPP models are probabilistic models
that enable the generation of complete distributions over future events. In
this context, point prediction metrics, like MAE, are deemed less suitable for
evaluating MTPP models because they consider single point predictions into
account. In contrast, the NLL and calibration scores directly evaluate the
entire predictive distributions, and should be therefore favored compared to
point prediction metrics.

Table D.2: PCE and ECE results of the different setups across all datasets.
The values are computed over 5 splits, and the standard error is reported in
parenthesis. Best results are highlighted in bold.

PCE
LastFM MOOC Github Reddit Stack O.

THP 0.28 (0.0) 0.37 (0.0) 0.2 (0.01) 0.12 (0.0) 0.01 (0.0)
THP+ 0.27 (0.01) 0.37 (0.0) 0.19 (0.01) 0.07 (0.0) 0.01 (0.0)

THP++ 0.28 (0.01) 0.37 (0.0) 0.19 (0.02) 0.05 (0.0) 0.01 (0.0)

STHP+ 0.29 (0.01) 0.37 (0.0) 0.29 (0.02) 0.1 (0.0) 0.01 (0.0)
STHP++ 0.29 (0.01) 0.36 (0.0) 0.25 (0.02) 0.1 (0.0) 0.01 (0.0)

SAHP 0.06 (0.01) 0.12 (0.0) 0.07 (0.0) 0.1 (0.01) 0.01 (0.0)
SAHP+ 0.05 (0.01) 0.03 (0.0) 0.04 (0.01) 0.01 (0.0) 0.0 (0.0)

SAHP++ 0.04 (0.01) 0.03 (0.0) 0.04 (0.01) 0.01 (0.0) 0.04 (0.0)

LNM 0.03 (0.01) 0.01 (0.0) 0.02 (0.0) 0.01 (0.0) 0.0 (0.0)
LNM+ 0.05 (0.01) 0.01 (0.0) 0.03 (0.0) 0.01 (0.0) 0.0 (0.0)

LNM++ 0.03 (0.0) 0.01 (0.0) 0.03 (0.0) 0.01 (0.0) 0.0 (0.0)

FNN 0.04 (0.0) 0.09 (0.0) 0.04 (0.01) 0.07 (0.0) 0.05 (0.0)
FNN+ 0.03 (0.0) 0.01 (0.0) 0.03 (0.01) 0.01 (0.0) 0.01 (0.0)

FNN++ 0.02 (0.0) 0.01 (0.0) 0.02 (0.0) 0.01 (0.0) 0.01 (0.0)

RMTPP 0.25 (0.01) 0.29 (0.0) 0.18 (0.01) 0.03 (0.0) 0.01 (0.0)
RMTPP+ 0.26 (0.01) 0.27 (0.01) 0.18 (0.01) 0.03 (0.0) 0.01 (0.0)

RMTPP++ 0.26 (0.0) 0.29 (0.0) 0.17 (0.01) 0.04 (0.0) 0.01 (0.0)

Hawkes 0.24 (0.0) 0.25 (0.0) 0.15 (0.01) 0.09 (0.0) 0.01 (0.0)

ECE
LastFM MOOC Github Reddit Stack O.

THP 0.23 (0.03) 0.07 (0.0) 0.09 (0.02) 0.02 (0.0) 0.04 (0.02)
THP+ 0.05 (0.01) 0.02 (0.0) 0.07 (0.01) 0.03 (0.01) 0.01 (0.0)

THP++ 0.03 (0.0) 0.02 (0.0) 0.07 (0.02) 0.02 (0.0) 0.01 (0.0)

STHP+ 0.05 (0.0) 0.03 (0.0) 0.06 (0.02) 0.03 (0.0) 0.02 (0.0)
STHP++ 0.04 (0.0) 0.04 (0.0) 0.04 (0.01) 0.05 (0.01) 0.03 (0.01)

SAHP 0.11 (0.01) 0.13 (0.0) 0.08 (0.02) 0.08 (0.01) 0.03 (0.0)
SAHP+ 0.06 (0.01) 0.02 (0.0) 0.07 (0.02) 0.03 (0.01) 0.01 (0.0)

SAHP++ 0.03 (0.0) 0.02 (0.01) 0.07 (0.01) 0.02 (0.0) 0.01 (0.0)

LNM 0.09 (0.02) 0.07 (0.01) 0.05 (0.01) 0.03 (0.01) 0.03 (0.01)
LNM+ 0.05 (0.01) 0.04 (0.01) 0.06 (0.01) 0.02 (0.0) 0.01 (0.0)

LNM++ 0.02 (0.0) 0.02 (0.0) 0.05 (0.01) 0.02 (0.0) 0.01 (0.0)

FNN 0.08 (0.01) 0.05 (0.0) 0.05 (0.0) 0.04 (0.01) 0.02 (0.0)
FNN+ 0.04 (0.01) 0.02 (0.0) 0.06 (0.0) 0.02 (0.0) 0.01 (0.0)

FNN++ 0.03 (0.0) 0.02 (0.0) 0.07 (0.02) 0.02 (0.0) 0.01 (0.0)

RMTPP 0.05 (0.01) 0.06 (0.01) 0.07 (0.0) 0.03 (0.0) 0.03 (0.02)
RMTPP+ 0.05 (0.01) 0.03 (0.01) 0.06 (0.0) 0.03 (0.01) 0.01 (0.0)

RMTPP++ 0.04 (0.01) 0.02 (0.0) 0.06 (0.01) 0.02 (0.0) 0.01 (0.0)

Hawkes 0.03 (0.0) 0.19 (0.01) 0.04 (0.0) 0.05 (0.0) 0.03 (0.01)
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Table D.3: Accuracy@1 and Accuracy@5 results of the different setups across
all datasets. The values are computed over 5 splits, and the standard error is
reported in parenthesis. Best results are highlighted in bold.

Accuracy
LastFM MOOC Github Reddit Stack O.

THP 0.18 (0.01) 0.4 (0.0) 0.59 (0.02) 0.83 (0.0) 0.48 (0.0)
THP+ 0.21 (0.01) 0.52 (0.0) 0.64 (0.01) 0.82 (0.0) 0.49 (0.0)

THP++ 0.25 (0.01) 0.55 (0.0) 0.67 (0.01) 0.82 (0.0) 0.49 (0.0)

STHP+ 0.2 (0.01) 0.46 (0.0) 0.63 (0.01) 0.81 (0.0) 0.48 (0.0)
STHP++ 0.21 (0.01) 0.46 (0.0) 0.65 (0.01) 0.81 (0.0) 0.48 (0.0)

SAHP 0.05 (0.0) 0.36 (0.01) 0.6 (0.01) 0.69 (0.02) 0.48 (0.0)
SAHP+ 0.14 (0.01) 0.54 (0.0) 0.65 (0.01) 0.82 (0.0) 0.49 (0.0)

SAHP++ 0.24 (0.01) 0.56 (0.0) 0.67 (0.01) 0.82 (0.0) 0.49 (0.0)

LNM 0.21 (0.01) 0.43 (0.0) 0.64 (0.01) 0.81 (0.0) 0.47 (0.0)
LNM+ 0.24 (0.01) 0.52 (0.0) 0.67 (0.01) 0.82 (0.0) 0.49 (0.0)

LNM++ 0.25 (0.01) 0.54 (0.0) 0.67 (0.01) 0.82 (0.0) 0.48 (0.0)

FNN 0.13 (0.01) 0.51 (0.0) 0.67 (0.01) 0.8 (0.01) 0.48 (0.0)
FNN+ 0.23 (0.01) 0.55 (0.0) 0.67 (0.01) 0.82 (0.0) 0.49 (0.0)

FNN++ 0.25 (0.01) 0.55 (0.0) 0.67 (0.01) 0.82 (0.0) 0.49 (0.0)

RMTPP 0.23 (0.01) 0.42 (0.0) 0.61 (0.02) 0.82 (0.0) 0.47 (0.0)
RMTPP+ 0.23 (0.01) 0.53 (0.0) 0.64 (0.01) 0.82 (0.0) 0.49 (0.0)

RMTPP++ 0.24 (0.01) 0.55 (0.0) 0.67 (0.01) 0.82 (0.0) 0.49 (0.0)

Hawkes 0.31 (0.0) 0.3 (0.0) 0.64 (0.01) 0.82 (0.0) 0.47 (0.0)

Accuracy@5
LastFM MOOC Github Reddit Stack O.

THP 0.46 (0.01) 0.87 (0.0) 0.95 (0.01) 0.93 (0.0) 0.93 (0.0)
THP+ 0.47 (0.01) 0.89 (0.0) 0.96 (0.0) 0.92 (0.0) 0.93 (0.0)

THP++ 0.52 (0.01) 0.9 (0.0) 0.97 (0.0) 0.93 (0.0) 0.93 (0.0)

STHP+ 0.46 (0.01) 0.88 (0.0) 0.96 (0.0) 0.92 (0.0) 0.93 (0.0)
STHP++ 0.46 (0.01) 0.89 (0.0) 0.97 (0.0) 0.91 (0.0) 0.92 (0.0)

SAHP 0.22 (0.01) 0.67 (0.01) 0.95 (0.0) 0.84 (0.02) 0.91 (0.0)
SAHP+ 0.39 (0.01) 0.89 (0.0) 0.97 (0.0) 0.92 (0.0) 0.93 (0.0)

SAHP++ 0.52 (0.01) 0.9 (0.0) 0.97 (0.0) 0.93 (0.0) 0.93 (0.0)

LNM 0.47 (0.02) 0.88 (0.0) 0.96 (0.0) 0.92 (0.0) 0.92 (0.0)
LNM+ 0.51 (0.01) 0.89 (0.0) 0.97 (0.0) 0.93 (0.0) 0.93 (0.0)

LNM++ 0.54 (0.01) 0.9 (0.0) 0.97 (0.0) 0.93 (0.0) 0.93 (0.0)

FNN 0.4 (0.01) 0.88 (0.0) 0.97 (0.0) 0.92 (0.0) 0.91 (0.0)
FNN+ 0.5 (0.01) 0.9 (0.0) 0.97 (0.0) 0.93 (0.0) 0.93 (0.0)

FNN++ 0.53 (0.01) 0.9 (0.0) 0.97 (0.0) 0.93 (0.0) 0.93 (0.0)

RMTPP 0.48 (0.01) 0.88 (0.0) 0.96 (0.0) 0.93 (0.0) 0.92 (0.0)
RMTPP+ 0.49 (0.01) 0.89 (0.0) 0.96 (0.0) 0.93 (0.0) 0.93 (0.0)

RMTPP++ 0.52 (0.01) 0.9 (0.0) 0.97 (0.0) 0.93 (0.0) 0.93 (0.0)

Hawkes 0.71 (0.01) 0.76 (0.0) 0.96 (0.0) 0.94 (0.0) 0.9 (0.0)

Table D.4: F1-score and MRR results of the different setups across all datasets.
The values are computed over 5 splits, and the standard error is reported in
parenthesis. Best results are highlighted in bold.

F1-score
LastFM MOOC Github Reddit Stack O.

THP 0.18 (0.0) 0.37 (0.0) 0.48 (0.05) 0.81 (0.0) 0.34 (0.0)
THP+ 0.22 (0.01) 0.51 (0.0) 0.57 (0.01) 0.81 (0.0) 0.35 (0.0)

THP++ 0.25 (0.01) 0.54 (0.0) 0.61 (0.01) 0.81 (0.0) 0.35 (0.0)

STHP+ 0.21 (0.01) 0.44 (0.0) 0.58 (0.01) 0.8 (0.0) 0.35 (0.0)
STHP++ 0.21 (0.01) 0.44 (0.0) 0.59 (0.01) 0.8 (0.0) 0.34 (0.0)

SAHP 0.02 (0.0) 0.29 (0.01) 0.54 (0.02) 0.67 (0.02) 0.34 (0.0)
SAHP+ 0.11 (0.02) 0.53 (0.0) 0.57 (0.01) 0.81 (0.0) 0.35 (0.0)

SAHP++ 0.24 (0.0) 0.54 (0.0) 0.61 (0.01) 0.81 (0.0) 0.35 (0.0)

LNM 0.2 (0.02) 0.41 (0.0) 0.57 (0.01) 0.8 (0.0) 0.33 (0.0)
LNM+ 0.24 (0.0) 0.51 (0.0) 0.61 (0.01) 0.81 (0.0) 0.35 (0.0)

LNM++ 0.25 (0.01) 0.53 (0.0) 0.61 (0.01) 0.81 (0.0) 0.35 (0.0)

FNN 0.12 (0.02) 0.49 (0.0) 0.6 (0.01) 0.79 (0.01) 0.33 (0.0)
FNN+ 0.23 (0.01) 0.54 (0.0) 0.61 (0.01) 0.81 (0.0) 0.35 (0.0)

FNN++ 0.24 (0.01) 0.54 (0.0) 0.62 (0.01) 0.82 (0.0) 0.35 (0.0)

RMTPP 0.23 (0.02) 0.4 (0.0) 0.51 (0.03) 0.81 (0.0) 0.33 (0.0)
RMTPP+ 0.23 (0.01) 0.52 (0.0) 0.57 (0.0) 0.81 (0.0) 0.35 (0.0)

RMTPP++ 0.24 (0.01) 0.54 (0.0) 0.62 (0.01) 0.81 (0.0) 0.35 (0.0)

Hawkes 0.3 (0.0) 0.25 (0.0) 0.55 (0.01) 0.81 (0.0) 0.32 (0.0)

MRR
LastFM MOOC Github Reddit Stack O.

THP 0.32 (0.01) 0.6 (0.0) 0.74 (0.01) 0.87 (0.0) 0.67 (0.0)
THP+ 0.34 (0.01) 0.68 (0.0) 0.77 (0.01) 0.87 (0.0) 0.67 (0.0)

THP++ 0.38 (0.01) 0.7 (0.0) 0.79 (0.01) 0.87 (0.0) 0.67 (0.0)

STHP+ 0.33 (0.01) 0.64 (0.0) 0.77 (0.01) 0.86 (0.0) 0.67 (0.0)
STHP++ 0.34 (0.01) 0.64 (0.0) 0.78 (0.0) 0.86 (0.0) 0.67 (0.0)

SAHP 0.16 (0.0) 0.5 (0.01) 0.74 (0.01) 0.76 (0.02) 0.67 (0.0)
SAHP+ 0.27 (0.01) 0.69 (0.0) 0.78 (0.01) 0.86 (0.0) 0.67 (0.0)

SAHP++ 0.38 (0.01) 0.7 (0.0) 0.79 (0.01) 0.87 (0.0) 0.67 (0.0)

LNM 0.35 (0.01) 0.62 (0.0) 0.77 (0.0) 0.86 (0.0) 0.66 (0.0)
LNM+ 0.37 (0.01) 0.68 (0.0) 0.79 (0.0) 0.87 (0.0) 0.67 (0.0)

LNM++ 0.4 (0.01) 0.69 (0.0) 0.79 (0.01) 0.87 (0.0) 0.67 (0.0)

FNN 0.27 (0.01) 0.67 (0.0) 0.79 (0.01) 0.85 (0.0) 0.66 (0.0)
FNN+ 0.36 (0.01) 0.7 (0.0) 0.79 (0.0) 0.87 (0.0) 0.67 (0.0)

FNN++ 0.38 (0.01) 0.7 (0.0) 0.8 (0.0) 0.87 (0.0) 0.67 (0.0)

RMTPP 0.36 (0.01) 0.61 (0.0) 0.75 (0.01) 0.87 (0.0) 0.66 (0.0)
RMTPP+ 0.36 (0.01) 0.69 (0.0) 0.77 (0.01) 0.87 (0.0) 0.67 (0.0)

RMTPP++ 0.38 (0.01) 0.7 (0.0) 0.79 (0.01) 0.87 (0.0) 0.67 (0.0)

Hawkes 0.49 (0.0) 0.5 (0.0) 0.77 (0.01) 0.87 (0.0) 0.65 (0.0)
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Table D.5: MAE results of the different setups across all datasets. The values
are computed over 5 splits, and the standard error is reported in parenthesis.
Best results are highlighted in bold.

MAE
LastFM MOOC Github Reddit Stack O.

THP 0.01624 (0.00056) 0.13332 (0.00096) 0.0935 (0.01328) 0.15257 (0.00322) 0.09885 (0.00097)
THP+ 0.01925 (0.00165) 0.13638 (0.0016) 0.09769 (0.014) 0.15811 (0.00079) 0.09972 (0.00077)

THP++ 0.01744 (0.00103) 0.13365 (0.00134) 0.09327 (0.01162) 0.17627 (0.00359) 0.09926 (0.00069)

STHP+ 0.03717 (0.00978) 0.17422 (0.01899) 0.11691 (0.00889) 0.15864 (0.00409) 0.09883 (0.0007)
STHP++ 0.08356 (0.01887) 0.17057 (0.02083) 0.1029 (0.01195) 0.22542 (0.02801) 0.09931 (0.00056)

SAHP 0.0137 (0.00055) 0.12319 (0.00174) 0.08409 (0.01092) 0.18839 (0.00389) 0.0992 (0.00066)
SAHP+ 0.01364 (0.00056) 0.12318 (0.00191) 0.07491 (0.0117) 0.13427 (0.00216) 0.09853 (0.00071)

SAHP++ 0.01358 (0.0006) 0.12138 (0.00197) 0.07127 (0.0102) 0.13168 (0.00206) 0.10285 (0.00057)

FNN 0.03563 (0.0138) 0.16602 (0.0487) 0.41847 (0.19173) 0.23207 (0.05185) 0.266 (0.09399)
FNN+ 0.01055 (0.00043) 0.07732 (0.00034) 0.07093 (0.00902) 0.13157 (0.00208) 0.09299 (0.00072)

FNN++ 0.01054 (0.00042) 0.07711 (0.00039) 0.07102 (0.0093) 0.13148 (0.00231) 0.09305 (0.00064)

LNM 0.0111 (0.00049) 0.13516 (0.00078) 0.08706 (0.01153) 0.13494 (0.00202) 0.09494 (0.00075)
LNM+ 0.01131 (0.00054) 0.13548 (0.0011) 0.08715 (0.0114) 0.135 (0.00213) 0.09517 (0.00069)

LNM++ 0.01098 (0.00049) 0.13083 (0.00096) 0.08694 (0.01135) 0.1361 (0.00209) 0.09476 (0.00071)

RMTPP 0.01619 (0.00097) 0.1208 (0.00084) 0.12939 (0.02772) 0.13577 (0.00223) 0.09522 (0.00069)
RMTPP+ 0.01677 (0.00072) 0.12059 (0.00083) 0.11416 (0.02624) 0.1362 (0.00227) 0.09563 (0.00085)

RMTPP++ 0.01705 (0.00058) 0.12011 (0.00079) 0.09183 (0.0106) 0.13772 (0.00192) 0.09656 (0.0008)

Hawkes 0.0116 (0.00083) 0.13249 (0.00122) 0.08946 (0.01947) 0.14139 (0.00338) 0.09672 (0.00107)

D.3.2 Reliability Diagrams

Figures D.1 to D.3 show the reliability diagrams of the time and mark predic-
tive distribution for all models in the base and base++ setups on all datasets.
In most cases, we observe improved mark calibration for the base++ setup
compared to the base models, in accordance to the ECE results of Table D.2.
Additionally, improvements with respect to the calibration of the time predic-
tive distribution is in general less prevalent, corroborating our discussion in
the main text. This observation is also in coherent with the PCE results of
Table D.2. Nonetheless, we observe substantial time calibration improvements
for SAHP and FNN when trained in the base++ setup on MOOC and Reddit.

Figure D.4 shows the reliability diagrams for the time and mark predictive dis-
tributions of the Hawkes model for all datasets. We observe that the Hawkes
model either shows competitive or worse mark calibration compared to neural
MTPP models trained in the base++ setup. Note that this observation con-
trasts with our findings of Section 3.3, in which we found the Hawkes model to
have the overall best mark calibration. Specifically, the ECE values of Table
C.5 indicate that the Hawkes model outperforms neural MTPP baselines on
LastFM and Github. Nonetheless, the mark calibration of the Hawkes model
is now matched on these datasets by training neural MTPP baselines in the



231

base++ setup, as demonstrated by the ECE values of Table D.2 and the re-
liability diagrams of Figures D.1 and D.2. Finally, comparing Figures D.1 to
D.3 and Figure D.4, we observe that the time predictive distributions of neural
MTPP models trained in the base++ setup are in general better calibrated
than the ones returned by the Hawkes model.
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Figure D.1: Reliability diagrams of the mark (top) and time (bottom) pre-
dictive distributions on LastFM. Accuracy and distribution of PITs (Dis. of
PITs) aligning with the black diagonal corresponds to perfect calibration. The
results are averaged over 5 splits, and the error bars correspond to the standard
error.
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(a) MOOC
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(b) Github
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Figure D.2: Reliability diagrams of mark (top) and time (bottom) predictive
distributions on MOOC and Github. Accuracy and distribution of PITs (Dis.
of PITs) aligning with the black diagonal corresponds to perfect calibration.
The results are averaged over 5 splits, and the error bars correspond to the
standard error.
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(a) Reddit
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(b) Stack Overflow
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Figure D.3: Reliability diagrams of the mark (top) and time (bottom) predic-
tive distributions on Reddit and Stack Overflow. Accuracy and distribution
of PITs (Dis. of PITs) aligning with the black diagonal corresponds to perfect
calibration. The results are averaged over 5 splits, and the error bars corre-
spond to the standard error.



234 Supplementary Material for Chapter 4

0.2 0.4 0.6 0.8 1.0
 

0.0

0.2

0.5

0.8

1.0

Ac
cu

ra
cy

LastFM

0.2 0.4 0.6 0.8 1.0
 

MOOC

0.2 0.4 0.6 0.8 1.0
 Confidence

Github

0.2 0.4 0.6 0.8 1.0
 

Stack Overflow

0.2 0.4 0.6 0.8 1.0
 

Reddit

0.0 0.2 0.4 0.6 0.8 1.0
 

0.0
0.2
0.4
0.6
0.8
1.0

Di
s. 

of
 P

ITs

LastFM

0.0 0.2 0.4 0.6 0.8 1.0
 

MOOC

0.0 0.2 0.4 0.6 0.8 1.0
 Confidence

Github

0.0 0.2 0.4 0.6 0.8 1.0
 

Stack Overflow

0.0 0.2 0.4 0.6 0.8 1.0
 

Reddit

Figure D.4: Reliability diagrams of the mark (top) and time (bottom) predic-
tive distributions for the Hawkes model on all datasets. Accuracy and distri-
bution of PITs (Dis. of PITs) aligning with the black diagonal corresponds to
perfect calibration. The results are averaged over 5 splits, and the error bars
correspond to the standard error.

D.3.3 Distributions of Conflicting Gradients Between the Base
and Base+ Settings

Figures D.5 to D.6 show the distributions of cos ϕTM during training, as well
as the proportion of conflicting gradients (CG), their average GMS, and their
average TPI for all models in the base and base+ setups on all datasets. As
discussed in the main text, severe conflicts (cos ϕTM < −0.5) often arise when
training neural MTPP models in the base setup. For THP, SAHP, and FNN,
the base+ setup reduces the occurrence of severe conflicts at the encoder heads,
and prevents conflicting gradients to appear at the decoder heads. For LNM
and RMTPP, we only show the distribution of cos ϕTM at the encoder heads
as the decoders are by design free of conflicting gradients in the base and base+
setups. For these models, the base+ setup does not change significantly the
distribution of conflicting gradients during training, which aligns with expec-
tations. Hence, we attribute performance gains on the mark prediction task
to the alleviation of the conditional independence assumption of arrival times
and marks through (4.26).
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Figure D.5: Distribution of cos ϕTM during training at the encoder (ENC)
and decoder (DEC) heads for all baselines in the base and base+ setup on
LastFM, MOOC and Github. "B" and "+" refer to the base and base+
models, respectively, and the distribution is obtained by pooling the values of
ϕTM over 5 training runs. As the decoders are disjoint in the base+ setting,
note that cos ϕTM is not defined.
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Figure D.6: Distribution of cos ϕTM during training at the encoder (ENC)
and decoder (DEC) heads for all baselines in the base and base+ setup on
Reddit and Stack Overflow. "B" and "+" refer to the base and base+ models,
respectively, and the distribution is obtained by pooling the values of ϕTM over
5 training runs. As the decoders are disjoint in the base+ setting, note that
cos ϕTM is not defined.
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D.3.4 Distributions of Conflicting Gradients in the Base and
Base-D Settings

Figure D.7 shows the distribution of cos ϕTM during training, as well as the
proportion of conflicting gradients (CG), their average GMS, and their average
TPI for THP, SAHP, and FNN in the base and base-D setups on all datasets.
We observe that using two identical and task-specific instances of the same de-
coder in the base-D setup for the time and mark prediction tasks mitigates the
occurrence of conflicts. The decrease in conflicting gradients during training
is in turn associated to increased performance with respect to both tasks. We
refer the reader to the discussion in Section 4.4.2 of the main text for further
details.
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Figure D.7: Distribution of cos ϕTM during training at the encoder (ENC)
and decoder (DEC) heads for all baselines in the base and base-D setup on
Github, Reddit and Stack Overflow. "B" and "D" refer to the base and base-D
models, respectively, and the distribution is obtained by pooling the values of
ϕTM over 5 training runs. As the decoders are disjoint in the base-D setting,
note that cos ϕTM is not defined.
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E.1. Results on Other Models

In Section 5.5.5, we provided results for the LNM+ model. In Sections E.1.1
to E.1.3, we present additional findings for the FNN, RMTPP, and SAHP mod-
els, respectively, on the datasets discussed in the main text. Ideally, the MC
and WSC metrics should align with the nominal coverage 1 − α = 0.8, while
the relative length (R. Length), geometric length (G. Length), and CCE met-
rics should be minimized. Across all these models, our conclusions align with
those outlined in Section 5.5.5, and are applicable to all scenarios considered,
i.e. prediction regions for the arrival times, marks, or both.

E.1.1 FNN

0.00

0.25

0.50

0.75

1.00

M
C

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0

2

4

6

R.
 L

en
gt

h

0

10

20

30

0

1

2

0

1

2

3

0.0

0.5

1.0

1.5

3

2

1

0

G.
 L

en
gt

h

4

2

0

1.0

0.5

0.0

1

0

1.5

1.0

0.5

0.0

0.00

0.25

0.50

0.75

1.00

W
SC

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

LastFM
0.00

0.05

0.10

CC
E

MOOC
0.0000

0.0025

0.0050

0.0075

Reddit
0.00

0.02

0.04

Retweets
0.00

0.05

0.10

Stack Overflow
0.00

0.01

0.02

H-QR H-QRL H-HDR C-Const C-QR C-QRL C-HDR

Figure E.1: Performance of different methods producing a region for the time
on real world datasets using the FNN model.
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Figure E.2: Performance of different methods producing a region for the mark
on real world datasets using the FNN model.
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Figure E.3: Performance of different methods producing a joint region for the
time and mark on real world datasets using the FNN model.
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E.1.2 RMTPP

0.00

0.25

0.50

0.75

1.00

M
C

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0

2

4

R.
 L

en
gt

h

0

5

10

0

1

2

3

0

2

4

0.0

0.5

1.0

1.5

3

2

1

0

G.
 L

en
gt

h

4

2

0

1.5

1.0

0.5

0.0

1

0

1.5

1.0

0.5

0.0

0.00

0.25

0.50

0.75

1.00

W
SC

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

LastFM
0.00

0.05

0.10

CC
E

MOOC
0.00

0.05

0.10

0.15

Reddit
0.00

0.02

0.04

0.06

Retweets
0.00

0.05

0.10

Stack Overflow
0.00

0.02

0.04

H-QR H-QRL H-HDR C-Const C-QR C-QRL C-HDR

Figure E.4: Performance of different methods producing a region for the time
on real world datasets using the RMTPP model.
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Figure E.5: Performance of different methods producing a region for the mark
on real world datasets using the RMTPP model.
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Figure E.6: Performance of different methods producing a joint region for the
time and mark on real world datasets using the RMTPP model.
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Figure E.7: Performance of different methods producing a region for the time
on real world datasets using the SAHP model.
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Figure E.8: Performance of different methods producing a region for the mark
on real world datasets using the SAHP model.
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Figure E.9: Performance of different methods producing a joint region for the
time and mark on real world datasets using the SAHP model.
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E.2. Results on Other Real and Synthetic Datasets

In this section, we report the results on the Github, MIMIC2, Wikipedia,
and Hawkes datasets for all models and all scenarios. Ideally, the MC and
WSC metrics should align with the nominal coverage 1 − α = 0.8, while the
relative length (R. Length), geometric length (G. Length), and CCE metrics
should be minimized. We note that the findings on these datasets are also
generally consistent with our conclusions from Section 5.5.5. Nonetheless, we
usually observe a large variability in the results for Github, MIMIC2, and
Wikipedia, explained by the few number of observations in the calibration
and test sequences. We therefore invite the reader to exercise caution when
interpreting the findings on these real-world datasets.

Finally, for the Hawkes dataset, we observe that heuristic methods tend to
already attain the desired coverage level. This finding may be explained by
a too simplistic underlying generative Hawkes process, which is already well
fitted by the MTPP models. We plan to investigate more complex simulated
point processes as part of our future work.
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Figure E.10: Performance of different methods producing a region for the time
on the datasets not discussed in the main text using the LNM+ model.
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Figure E.11: Performance of different methods producing a region for the mark
on the datasets not discussed in the main text using the LNM+ model.
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Figure E.12: Performance of different methods producing a joint region for
the time and mark on the datasets not discussed in the main text using the
LNM+ model.
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E.2.2 FNN
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Figure E.13: Performance of different methods producing a region for the time
on the datasets not discussed in the main text using the FNN model.
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Figure E.14: Performance of different methods producing a region for the mark
on the datasets not discussed in the main text using the FNN model.



248 Supplementary Material for Chapter 5

0.00
0.25
0.50
0.75
1.00

M
C

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0

5

10

15

R.
 L

en
gt

h

0

1

2

3

0

5

10

0.0

0.5

1.0

1.5

0

1

2

3

G.
 L

en
gt

h

0

1
2
3

0

1

2

3

0.2

0.0

0.00
0.25
0.50
0.75
1.00

W
SC

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

Github
0.0

0.1

0.2

CC
E

MIMIC2
0.00

0.01

0.02

0.03

Wikipedia
0.00

0.02

0.04

0.06

Hawkes
0.000

0.001

0.002

H-QRL-RAPS H-HDR-RAPS H-HDR C-QRL-RAPS C-HDR-RAPS C-HDR

Figure E.15: Performance of different methods producing a joint region for the
time and mark on the datasets not discussed in the main text using the FNN
model.
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Figure E.16: Performance of different methods producing a region for the time
on the datasets not discussed in the main text using the RMTPP model.
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Figure E.17: Performance of different methods producing a region for the mark
on the datasets not discussed in the main text using the RMTPP model.
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Figure E.18: Performance of different methods producing a joint region for
the time and mark on the datasets not discussed in the main text using the
RMTPP model.
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E.2.4 SAHP
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Figure E.19: Performance of different methods producing a region for the time
on the datasets not discussed in the main text using the SAHP model.
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Figure E.20: Performance of different methods producing a region for the mark
on the datasets not discussed in the main text using the SAHP model.



251

0.00
0.25
0.50
0.75
1.00

M
C

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0

10

20

R.
 L

en
gt

h

0

5

10

0

5

10

0

2

4

0

2

G.
 L

en
gt

h

0.0

0.5

1.0

1.5

0

2

4

0.0

0.5

0.00
0.25
0.50
0.75
1.00

W
SC

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

Github
0.0

0.1

0.2

CC
E

MIMIC2
0.000

0.025

0.050

0.075

Wikipedia
0.000

0.025

0.050

0.075

Hawkes
0.000

0.005

0.010

H-QRL-RAPS H-HDR-RAPS H-HDR C-QRL-RAPS C-HDR-RAPS C-HDR

Figure E.21: Performance of different methods producing a joint region for the
time and mark on the datasets not discussed in the main text using the SAHP
model.

E.3. Coverage Per Level

Section 5.5.5.4 discussed the empirical marginal coverage obtained at different
coverage levels for methods that generate a joint prediction region on the arrival
time and mark. In this section, we present additional results for methods that
generate a prediction region individually for either the time or mark.
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Figure E.22: Empirical marginal coverage for different coverage levels for meth-
ods that produce a prediction region for the time with the LNM+ model.
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Fig. E.22 shows that conformal methods for the time attain the desired cover-
age at all levels while heuristic methods generally undercover. This is expected
and mirrors the observations in Section 5.5.5.4.

Fig. E.23 shows that all methods, either heuristic or conformal, overcover for
small coverage levels, while coverage is attained for high coverage levels. The
reason is that all methods that generate a prediction set for the mark guarantee
that prediction sets are not empty by always adding the class with the highest
probability, as presented in Section 5.5.2. We do not observe overcoverage
for high coverage levels because the class with highest probability will almost
always be included. However, for low coverage levels, prediction sets that
would normally be empty now include the mark with the highest probability,
which leads to increased coverage.
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Figure E.23: Empirical marginal coverage for different coverage levels for meth-
ods that produce a prediction region for the mark with the LNM+ model.

E.4. An Additional Toy Example of Prediction Re-
gions

In Fig. 5.5 in Section 5.5.5.1, we presented an example illustrating prediction
regions for the time for seven methods with α = 0.5. For completeness, we
provide an additional toy example with α = 0.2 and a calibration dataset of
6 data points in Fig. E.24. As in Fig. 5.5, the heuristic methods undercover,
achieving a maximum coverage of 4/6, which is less than the desired coverage of
0.8. Notably, H-QRL and H-HDR produce exactly the same prediction regions
because the densities are decreasing in this case. Conformal methods adjust
the predictions regions to achieve coverage in at least five out of six cases.
Similarly to Fig. 5.5, C-HDR generates larger regions on average than other
conformal methods despite H-HDR always producing shorter or equivalent
lengths compared to H-QR and H-QRL.
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Figure E.24: Toy example with α = 0.2 and a calibration dataset of 6 data
points.

E.5. Computational Time

In Table E.1, we present the computation times for evaluating the scores and
regions across each conformal method utilized in our experiments. Except
for C-Const, which incurs a minimal computation time primarily due to data
loading, the computational demands of the other methods are of a comparable
magnitude.

For all methods excluding C-Const, computation time is primarily governed
by the calculation of the CDF of the time and the joint PDF of the time
and mark. Specifically, the most resource-intensive tasks involve computing
the quantiles of the time or generating samples from the time distribution,
as these operations require inverting the CDF using the bisection method,
typically necessitating around 30 evaluations.

In the cases of C-QR and C-QRL, the computation time is dominated by com-
puting the quantiles of the time. For C-HDR (time and joint), C-PROB, C-APS,
and C-RAPS, the primary computational load comes from generating time sam-
ples. More specifically, for C-HDR, these samples are needed to compute HPD
values. For C-PROB, C-APS, and C-RAPS, computing the marginal PMF of the
mark relative to the time involves averaging the joint density over the time
across these samples.
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Table E.1: Time to compute the scores and regions for all considered conformal
methods on real world datasets using the CLNM model, averaged over 5 runs,
in seconds.

Time Mark Joint

Dataset Compute
type C-Const C-QR C-QRL C-HDR C-PROB C-APS C-RAPS C-QRL

-RAPS
C-HDR
-RAPS C-HDR

LastFM Score 0.07 15.01 8.10 8.63 8.40 8.40 8.36 16.56 17.11 8.71
Region 0.10 9.97 5.42 10.51 5.61 5.62 5.61 10.34 15.55 11.70

MOOC Score 0.38 93.17 47.64 51.70 49.68 49.33 49.71 96.90 102.07 51.88
Region 0.75 62.32 32.06 66.46 33.30 33.36 33.58 64.24 99.40 74.98

Reddit Score 0.25 56.47 29.04 31.51 30.34 30.23 30.19 59.48 61.97 31.93
Region 0.48 38.31 19.84 40.60 20.72 20.78 20.73 39.48 60.66 45.68

Retweets Score 0.60 159.38 80.30 85.84 84.54 84.27 84.13 165.46 171.16 86.88
Region 0.56 106.49 53.93 112.55 56.77 56.43 56.60 110.03 169.60 114.00

Stack
Overflow

Score 0.45 105.68 53.33 57.20 55.86 55.92 55.76 113.25 112.95 57.55
Region 0.58 71.12 35.91 75.17 37.90 38.14 37.88 79.21 111.91 79.11

E.6. Partitioning for Conditional Coverage

In this section, we elaborate on the choice of distance function to create the
partitions for the metric CCE introduced in Section 5.5.4. On Fig. E.25, we
show the CDF of Z for all instances in the calibration dataset of the Reddit
dataset. As shown in Fig. E.25a, instances where the distributions of Z have
the longest tails exhibit extreme distances from other distributions, resulting
into their isolation into small clusters. Fig. E.25b shows that, by instead focus-
ing on the random variable logZ, we achieve more balanced cluster sizes, which
is crucial to have an accurate estimation of coverage within each partition.
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Figure E.25: The two subfigures show the CDF of Z for all instances in the
calibration dataset of the Reddit dataset. The colors determine the partition
in which an instance falls according to the distance dZ on the left and dlogZ on
the right, as introduced in Section 5.5.4. The legend denotes the size of each
cluster of the partition.
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E.7. Additional Examples of Joint Prediction Regions

Figure E.26 presents additional predictions regions generated by conformal
methods on the datasets MOOC, Reddit and Stack Overflow, respectively. We
observe that C-HDR generally selects more marks than C-QRL-RAPS and C-
HDR-RAPS. However, the joint region produced by C-HDR is usually smaller.
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Figure E.26: Example of joint prediction regions generated for the last event
of a test sequence.
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